• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Air-sea exchange of O2 and CO2 : Processes controlling the transfer efficiency

Andersson, Andreas January 2017 (has links)
World oceans cover more than 70% of the earth surface and constitutes a major sink of atmospheric CO2. Two of the most important gases in the marine carbon cycling are O2 and CO2 and hence accurate descriptions of the air-sea gas exchange of these gases are crucial. Still there is a lack of knowledge of the relative importance of processes controlling the efficiency of the air-sea gas transfer. This is especially true for Arctic and high latitude seas were studies on air-sea gas exchange are few. By studying processes causing water-side turbulence, using gases of different solubility and various measurement techniques, more knowledge on the governing processes can be obtained. Here we present the very first air-sea fluxes of O2 using atmospheric eddy covariance measurements and investigate the dependence between the gas transfer velocity of O2 and turbulence generated by the mean wind. The instrument was found to suffer from the limited precision and time response, causing significant corrections on the O2 flux. After correcting for this, the O2 fluxes displays an anti-correlation with the air-sea fluxes of CO2 in agreement with the measured air-sea gradient of O2. The transfer velocities for O2 indicates a stronger wind dependence than other commonly used parameterizations of the transfer velocity for CO2 and O2, this especially for wind speeds > 5 m s-1 where the typical onset of wave breaking occur. During two winter months eddy covariance measurements were taken over a high Arctic fjord. The data revealed a significant enhancement of the gas transfer velocity for CO2 from water-side convection, generated by cooling of surface waters. The dependence between water-side convection and gas transfer velocity were found for winds as high as 9 m s-1, but were strongest for wind speeds< 7  m s-1.  The data also showed on enhanced air-sea gas transfer of CO2 when conditions were unstable very close to neutral. This enhanced transfer were associated to increased contribution to the CO2 flux from downdraft of air with higher concentrations of CO2.  The combined effect of water-side convection and turbulence generated by wind results in a very effective transfer, thus the air-sea gas exchange at these latitudes may be significantly underestimated.
2

Installation and Operation of Air-Sea Flux Measuring System on Board Indian Research Ships

Kumar, Vijay January 2017 (has links) (PDF)
Exchange of mass (water vapor), momentum, and energy between atmosphere andocean has profound influence on weather and climate. This exchange takes place at the air-sea interface, which is part of the marine atmospheric boundary layer. Various empirical relations are being used for estimating these fluxes in numericalweather and climate models but their accuracies are not sufficiently verified or tested over the Indian Ocean. The main difficulty is that vast areas of open oceans are not easily accessible. The marine environment is very corrosive and unattended long term and accurate measurements are extremely expensive. India has research ships that spend most of their time over the seas around India but that opportunity is yet to be exploited. To address this, an air-sea flux measurement system for operation on board research ships was planned. The system was tested on board Indian Research Vessels ORV SagarKanya during its cruise SK-296 in the Bay of Bengal (BoB) in July-August 2012, and NIO ship Sindhu Sadhana in June-July 2016. The complete set included instruments for measuring wind velocity, windspeed and direction, air and water temperature, humidity, pressure, all components of radiation and rainfall. In addition, ship motion was recorded at required sampling rate to correct for wind velocity. The set up facilitates the direct computation of sensible and latent heat fluxes using the eddy covariance method. In this thesis, design and installation of meteorological and ship motion sensors onboard research ships, data collection and quality control, computation of fluxes of heat, moisture and momentum using eddy covariance method and their comparison with those derived from bulk method are described. A set of sensors (hereafter, flux measuring system) were mounted on a retractable boom, ~7 m long forward of the bow to minimize the flow disturbance caused by the ship superstructures. The wind observed in the ship frame was corrected for ship motion contaminations. During the CTCZ cruise period true mean wind speed was over 10 m/s and true wind direction was South/South-Westerly. True windspeedis computed combiningdata from the anemometer a compass connected to AWS and a GPS. Turbulent fluxes were computed from motion-corrected time-series of high frequency velocity, water vapor, and air temperature data. Covariance latent heat flux, sensible heat flux, and wind stress were obtained by cross-correlating the motion-corrected vertical velocity with fast humidity fluctuations measured with anIR hygrometer, temperate fluctuation from sonic anemometer and motion-corrected horizontal windfluctuations from sonic anemometer, respectively. During the first attempt made in July-August 2012 as part of a cruise of CTCZ monsoonresearch program, observations were mainly taken in the North Bay of Bengal. The mean air-temperature and surface pressure were ~28 Deg C and ~998 hPa, respectively. Relative humidity was ~80%. Average wind speed varied in the range 4-12 m/s. The mean latent heat flux was 145 W/m2 , sensible heat flux was ~3 W/m2 and average sea-air temperature difference was ~ 0.7°C. The Bay of Bengal boundary layer experiment (BoBBLE) was conducted during June-July 2016 and the NIO research ship Sindhu Sadhana was deployed. The same suite of sensors installed during CTCZ were used during BoBBLE. During daytime, peaks of hourly net heat fluxes (Qnet ) were around 600 Wm-2(positive if into the sea), whereas, night time values were around -250 W m-2. Sea surface temperature was always >28°C and maximum air temperature exceeded 29°C. During the experimental period the mean Qnet was around -24 Wm-2 from both eddy covariance and conventional bulk methods, but there are significant differences on individual days.The new flux system gives fluxes which are superior to what was available before.
3

Air-Sea Flux Measurements Over The Bay Of Bengal During A Summer Monsoon

Raju, Jampana V S 11 1900 (has links)
Majority of the rain producing monsoon systems in India form or intensify over the Bay of Bengal and move onto the land. We expect the air-sea interaction to be a crucial factor in the frequent genesis and intensification of monsoon systems over the Bay. Knowledge of air-sea fluxes is essential in determining the air-sea interactions. However, the Bay remains a poorly monitored ocean basin and the state of the near surface conditions during the monsoon months remains to be studied in detail. For example, we do not know yet which among the various flux formulae used in the General circulation models are appropriate over the Bay since there are no direct measurements of surface fluxes here during the peak monsoon months. The present thesis aims towards filing that gap. In this thesis fluxes were computed using the Bulk method, Inertial dissipation method and direct covariance method. The flux comparisons were reasonable during certain flow conditions which are clearly identified. When these conditions are not met the differences among the fluxes from these methods can be larger than the inherent uncertainties' in the methods. Stratification, flow distortion and averaging time are the key variables that give rise to the differences in the fluxes. It is found that there are significant differences in the surface flux estimates computed from different atmospheric General Circulation Model bulk parameterization schemes. In this thesis, the flow gradients are estimated by taking advantage of the natural pitch and roll motion of the ship. A attempt is made to gain insight into the flow distortion and its influence on the fluxes. In our analysis it is found that the displacement of the streamlines is an important component in quantifying flow distortion.

Page generated in 0.0363 seconds