Spelling suggestions: "subject:"airsea gas exchange"" "subject:"airseal gas exchange""
1 |
Carbon dioxide in the atmosphere: A study of mean levels and air-sea fluxes over the Baltic SeaWittskog, Cristoffer January 2005 (has links)
The Carbon dioxide (CO2) concentration in the atmosphere has increased dramatically since the start of the industrialisation. The effects that the increase of CO2 has on the future climate are still not fully investigated. CO2 in the atmosphere contributes to the, for all life on earth, necessary greenhouse effect. It is confirmed that higher CO2 concentration in the atmosphere increases the green house effect, which results in higher temperature. The main source to the increase of CO2 is burning of fossil fuels. The change in land use is also a contribution to the increase of the CO2 concentration in the atmosphere. The largest sinks of CO2 are organic consumption and oceanic uptake. The organic consumption of CO2 varies a lot at higher latitudes due to the difference in vegetation between the seasons. During the warmer seasons the consumption of CO2 is large and during the winters the consumptions of CO2 is practically zero. The ocean uptake of CO2 varies also a lot during the year because the CO2 dissolves more easily in cold water. The purpose of this study is to analyse CO2 concentration and air-sea fluxes of CO2 measured at Östergarnsholm, a small flat island east of Gotland in the Baltic Sea, and compare the results to previous studies. The CO2 concentration data was collected between 1997 – 1999 and 2001 – 2003. The CO2 flux data was collected between 2001 and 2003. The analysis of the CO2 concentration showed that for the period 1997 to 1999, the CO2 concentration at Östergarnsholm was lower than for the reference series from a Polish site in the Baltic Sea. A correction was made by adding 27 ppm to the Östergarnsholm series. The annual fluctuations of CO2 concentration at Östergarnsholm are significant (about 40 ppm). During the summer 1998, the expected decrease was not as large as it should be because of the El Niño outbreak 97/98 and the locally cold and rainy summer. The direct measured CO2 fluxes were corrected with the well known Webb correction before they were analysed. The CO2 fluxes are wind dependant – higher wind speed give higher CO2 flux. The CO2 fluxes are also dependant of the difference in partial pressure between the air and the water. Parameterised CO2fluxes were calculated and compared to the direct measured CO2 fluxes. The parameterisations use a quadratic as well as a cubic wind dependency. To calculate the parameterised CO2 fluxes, a fixed value of the difference in partial pressure between the air and the water was used because the CO2 in the water was not measured. The parameterised CO2 fluxes wind dependency agreed with the direct measured CO2 fluxes. / Koldioxid(CO2)-koncentrationen i atmosfären har ökat stadigt sen början av industrialiseringen. Effekten som de ökade CO2-halterna kommer ha på framtidens klimat är ännu inte helt utrett. CO2 bidrar till den livsviktiga växthuseffekten. Det är en ökning av växthusgaser, bland annat CO2, som leder till en ökning av växthuseffekten. Ökad växthuseffekt leder till högre temperatur på jorden. Den största ökningen av CO2 i atmosfären beror på förbränning av fossila bränslen. Även förändringen i markanvändning leder till ökade halter av CO2. De största sänkorna av CO2 är den organiska konsumtionen av CO2 och havens upptag av CO2. Den organiska konsumtionen av CO2 varierar mycket under året och är som störst under de varmare månaderna. Havens upptag av CO2 varierar också mycket under året eftersom havens förmåga att lösa CO2 beror på vattnets temperatur. Syftet med den här studien är att analysera CO2-koncentrationen och CO2-flödena mellan hav och luft på Östergarnsholm, en liten, låg ö öster om Gotland. Resultaten jämförs med tidigare studier. CO2-koncentrationsdata samlades in mellan 1997 – 1999 och 2001 – 2003. CO2-flödesdata samlades in mellan 2001 och 2003. Analysen av CO2-koncentrationen visar att under perioden 1997 till 1999 är CO2- halterna för låga på Östergarnsholm. En korrektion gjordes genom att lägga till 27 ppm till de uppmätta CO2-halterna. Årsvariationerna av CO2-halterna är mycket tydliga men sommaren 1998 sjunker inte CO2-halten till så låga värden som de borde vara. Att CO2-halterna inte sjönk mer beror dels på El Niño-utbrottet 97/98 och dels på den lokalt kalla och regniga sommaren. De direkt mätta CO2-flödena korrigerades med hjälp av den välkända Webbkorrektionen innan de analyserades. CO2-flödena är beroende av vindhastigheten – högre vindhastighet ger högre CO2-flöden. CO2-flödena beror också på skillnaden i CO2-halt mellan luften och havet. Parameteriserade CO2-flöden beräknades och jämfördes med de direkt mätta CO2-flödena. De parameteriserade CO2-flödena beräknas antingen med kvadratiskt eller kubiskt vindberoende. För att beräkna parameteriserade CO2-flöden användes ett fast värde på skillnaden i CO2-halt mellan luften och vattnet eftersom CO2-halten i vattnet inte mäts. De parameteriserade CO2- flödenas vindberoende stämde överrens med de direkt mätta CO2-flödena.
|
2 |
Mechanisms controlling air-sea gas exchange in the Baltic SeaGutiérrez-Loza, Lucía January 2020 (has links)
Carbon plays a major role in physical and biogeochemical processes in the atmosphere, the biosphere, and the ocean. CO2 and CH4 are two of the most common carbon-containing compounds in the atmosphere, also recognized as major greenhouse gases. The exchange of CO2 and CH4 between the ocean and the atmosphere is an essential part of the global carbon cycle. The exchange is controlled by the air–sea concentration gradient and by the efficiency of the transfer processes. The lack of knowledge about the forcing mechanisms affecting the exchange of these climate-relevant gases is a major source of uncertainty in the estimation of the global oceanic contributions. Quantifying and understanding the air–sea exchange processes is essential to constrain the estimates and to improve our knowledge about the current and future climate. In this thesis, the mechanisms controlling the air–sea gas exchange in the Baltic Sea are investigated. The viability of micrometeorological techniques for CH4 monitoring in a coastal environment is evaluated. One year of semi-continuous measurements of air–sea CH4 fluxes using eddy covariance measurements suggests that the method is useful for CH4 flux estimations in marine environments. The measurements allow long-term monitoring at high frequency rates, thus, capturing the temporal variability of the flux. The region off Gotland is a net source of CH4, with both the air–sea concentration gradient and the wind as controlling mechanisms. A sensitivity analysis of the gas transfer velocity is performed to evaluate the effect of the forcing mechanisms controlling the air–sea CO2 exchange in the Baltic Sea. This analysis shows that the spatio-temporal variability of CO2 fluxes is strongly modulated by water-side convection, precipitation, and surfactants. The effect of these factors is relevant both at regional and global scales, as they are not included in the current budget estimates.
|
3 |
Oxygen saturation surrounding deep-water formation events in the Labrador Sea from Argo-O2 dataWolf, Mitchell 04 August 2017 (has links)
Deep-water formation supplies oxygen-rich water to the deep sea, spreading throughout the ocean via the global thermohaline circulation. Models suggest that gases in newly formed deep-water do not come to equilibrium with the atmosphere. However, direct measurements during wintertime convection are scarce, and the controls over the extent of this disequilibria are poorly quantified. Here we show that oxygen is consistently undersaturated at -6.3% to -7.6% in the Labrador Sea at the end of convection, when convection reaches deeper than 800 m. Deeper convection resulted in greater undersaturation while convection lasting later in the year resulted in values closer to equilibrium, from which we produce a predictive relationship. We use dissolved oxygen data from six profiling Argo floats in the Labrador Sea between 2003 to 2016, allowing direct observations of wintertime convection. Four of the six optode oxygen sensors displayed in situ drift of -2.98 μmol O2 kg-1 year-1 on average, which we corrected to stable deep-water oxygen values from repeat hydrography. Observations of low oxygen intrusions during restratification and a simple mixing calculation demonstrate that lateral processes act to lower the oxygen inventory of the central Labrador Sea. This suggests that the Labrador Sea is a net sink for atmospheric oxygen, but uncertainties in parameterizing gas exchange limit our ability to quantify the net uptake. Our results constrain the initial oxygen concentration of Labrador Sea Water and allow more precise estimates of oxygen utilization and nutrient regeneration in this water mass. / Graduate
|
4 |
An improvement on the gas transfer velocity model with application to scatterometer data / Uma melhora no modelo de transferência gasosa com aplicação a dados de escaterômetroAugusto, Fabio Lekecinskas 05 August 2015 (has links)
The increase of carbon dioxide in the atmosphere observed in recent decades is causing the acidification of the oceans besides the global warming. The amount of carbon dioxide that crosses the air-sea interface is not well known because this amount depends upon the partial pressure of carbon dioxide and the gas transfer velocity. The gas transfer velocity is a variable based on Fick\'s Law of Diffusion and is normally parametrized as a function of wind velocity at the height of 10 meters. However, the result of this parametrization have errors greater than 100%. Newer parametrization include the effects of temperature, friction velocity and the presence of surface waves. Based on the simplest model of air-sea gas transfer model, the stagnant film theory, this study developed a methodology to improve the knowledge of the relation between the gas transfer velocity and the mean square slope. This variable accounts for the mean curvature of the waves in the surface. The data used was gathered within the scope of the DOGEE project in 2007. In that, a drifting buoy measured several parameters relative to the waves and the gas transfer velocity. The results show that the mean square slope calculated with waves whose wavenumber is between 40 and 50 radians per meter has the lowest root mean square errors of the regression between the mean square slope and the gas transfer velocity. This result showed to be very consistent when applied to the QuikSCAT scatterometer data and compared to a recent published study. / O aumento da concentração de dióxido de carbono na atmosfera observado nas últimas décadas é responsável por alterações climáticas e ambientais em escala global. Uma das consequências desse aumento da concentração de gás carbônico é o aquecimento global. Outra consequência é a acidificação dos oceanos. Isto ocorre devido ao dióxido de carbono atravessar a interface ar-mar e se dissolver no oceano. A quantidade de dióxido de carbono que atravessa a interface ar-mar é um dado não conhecido com precisão devido a esta quantidade depender de uma constante conhecida por velocidade de transferência do gás carbônico. Esta velocidade de transferência é normalmente uma parametrização do transporte turbulento do gás na interface oceano-atmosfera. Como o dado mais comum para essa parametrização é o vento à altura de 10 metros, muitos estudos foram desenvolvidos utilizando esta variável. No entanto, os resultados destas parametrizações possuem erros da ordem de 100%. Este estudo desenvolveu uma metodologia para obter uma melhor estimativa da velocidade de transferência. Para isto, optou-se por relacionar esta variável à inclinação quadrática média (MSS) das ondas. Segundo a literatura científica recente, o MSS é uma variável mais relacionada à transferência gasosa do que o vento a 10 metros de altura. Os resultados mostram que a inclinação quadrática média calculado com números de onda entre 40 e 50 radianos por metro possuem o menor erro no ajuste linear com os dados de velocidade de transferência. Este resultado indica uma mudança da dinâmica da interface nesse intervalo de número de onda. Com isso, um novo ajuste linear entre o MSS e a velocidade de transferência é sugerido como parametrização. A aplicação desta nova parametrização a dados de satélite do tipo escaterômetro mostrou-se consistente quando comparado a um estudo recente relacionando a velocidade de transferência do gás carbônico diretamente a dados do satélite oceanográfico QuikSCAT.
|
5 |
An improvement on the gas transfer velocity model with application to scatterometer data / Uma melhora no modelo de transferência gasosa com aplicação a dados de escaterômetroFabio Lekecinskas Augusto 05 August 2015 (has links)
The increase of carbon dioxide in the atmosphere observed in recent decades is causing the acidification of the oceans besides the global warming. The amount of carbon dioxide that crosses the air-sea interface is not well known because this amount depends upon the partial pressure of carbon dioxide and the gas transfer velocity. The gas transfer velocity is a variable based on Fick\'s Law of Diffusion and is normally parametrized as a function of wind velocity at the height of 10 meters. However, the result of this parametrization have errors greater than 100%. Newer parametrization include the effects of temperature, friction velocity and the presence of surface waves. Based on the simplest model of air-sea gas transfer model, the stagnant film theory, this study developed a methodology to improve the knowledge of the relation between the gas transfer velocity and the mean square slope. This variable accounts for the mean curvature of the waves in the surface. The data used was gathered within the scope of the DOGEE project in 2007. In that, a drifting buoy measured several parameters relative to the waves and the gas transfer velocity. The results show that the mean square slope calculated with waves whose wavenumber is between 40 and 50 radians per meter has the lowest root mean square errors of the regression between the mean square slope and the gas transfer velocity. This result showed to be very consistent when applied to the QuikSCAT scatterometer data and compared to a recent published study. / O aumento da concentração de dióxido de carbono na atmosfera observado nas últimas décadas é responsável por alterações climáticas e ambientais em escala global. Uma das consequências desse aumento da concentração de gás carbônico é o aquecimento global. Outra consequência é a acidificação dos oceanos. Isto ocorre devido ao dióxido de carbono atravessar a interface ar-mar e se dissolver no oceano. A quantidade de dióxido de carbono que atravessa a interface ar-mar é um dado não conhecido com precisão devido a esta quantidade depender de uma constante conhecida por velocidade de transferência do gás carbônico. Esta velocidade de transferência é normalmente uma parametrização do transporte turbulento do gás na interface oceano-atmosfera. Como o dado mais comum para essa parametrização é o vento à altura de 10 metros, muitos estudos foram desenvolvidos utilizando esta variável. No entanto, os resultados destas parametrizações possuem erros da ordem de 100%. Este estudo desenvolveu uma metodologia para obter uma melhor estimativa da velocidade de transferência. Para isto, optou-se por relacionar esta variável à inclinação quadrática média (MSS) das ondas. Segundo a literatura científica recente, o MSS é uma variável mais relacionada à transferência gasosa do que o vento a 10 metros de altura. Os resultados mostram que a inclinação quadrática média calculado com números de onda entre 40 e 50 radianos por metro possuem o menor erro no ajuste linear com os dados de velocidade de transferência. Este resultado indica uma mudança da dinâmica da interface nesse intervalo de número de onda. Com isso, um novo ajuste linear entre o MSS e a velocidade de transferência é sugerido como parametrização. A aplicação desta nova parametrização a dados de satélite do tipo escaterômetro mostrou-se consistente quando comparado a um estudo recente relacionando a velocidade de transferência do gás carbônico diretamente a dados do satélite oceanográfico QuikSCAT.
|
Page generated in 0.0681 seconds