• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Controle de sistemas quadráticos sujeitos à saturação de atuadores

Longhi, Maurício Borges January 2014 (has links)
O presente trabalho aborda o problema de estabilização local de sistemas não lineares quadráticos contínuos no tempo (possivelmente instáveis em malha aberta) e sujeitos a saturação de atuadores. Além disso o trabalho apresenta um estudo de técnicas de síntese de compensadores de anti-windup para sistemas quadráticos sujeitos à saturação de atuadores. A abordagem do estudo é comparativa em relação a duas formas de representação dos sistemas quadráticos. A primeira forma de abordagem é a Representação Algébrico-Diferencial — DAR (do inglês, Differential Algebraic Representation), aplicável a toda a classe de sistemas racionais. A segunda forma, por sua vez, consiste em uma decomposição quadrática, particular para sistemas quadráticos. Em ambos os casos, utiliza-se a não linearidade de zona morta e uma condição generalizada de setor para tratar da saturação. Para ambas representações, condições baseadas em Desigualdades Matriciais Lineares — LMIs (do inglês, Linear Matrix Inequalities) dependentes dos estados são obtidas para fornecer uma lei de controle linear, com o objetivo de estabilizar o sistema em malha fechada enquanto fornece uma região maximizada de estabilidade garantida associada a uma função de Lyapunov. A partir da mesma metodologia, são propostas técnicas de síntese de compensadores de anti-windup estáticos e dinâmicos. Exemplos numéricos são apresentados para verificar a eficácia dos métodos propostos. / This work addresses the problem of local stabilization of continuous-time quadratic systems (possibly open-loop unstable) and subject to actuator saturation. Furthermore, the work addresses a study of techniques for synthesis of anti-windup compensators for quadratic systems subject to actuator saturation. The study approach is comparative in the sense of considering two representations of quadratic systems. The first one is the Differential Algebraic Representation — DAR, suitable for the entire class of rational systems. The second representation consists in a quadratic decomposition, particular for quadratic systems. In both cases, it is used the deadzone nonlinearity and the generalized sector condition in order to deal with the saturation. For both representations, state-dependent Linear Matrix Inequalities — LMIs conditions are obtained to provide a control law with the aim of stabilize the closed-loop system while providing a region of guaranteed stability, associated to a Lyapunov function. Based on the same methodology, techniques are proposed for the synthesis of static and dynamic anti-windup compensators. Numerical examples are presented to verify the effectiveness of proposed methods.
2

Controle de sistemas quadráticos sujeitos à saturação de atuadores

Longhi, Maurício Borges January 2014 (has links)
O presente trabalho aborda o problema de estabilização local de sistemas não lineares quadráticos contínuos no tempo (possivelmente instáveis em malha aberta) e sujeitos a saturação de atuadores. Além disso o trabalho apresenta um estudo de técnicas de síntese de compensadores de anti-windup para sistemas quadráticos sujeitos à saturação de atuadores. A abordagem do estudo é comparativa em relação a duas formas de representação dos sistemas quadráticos. A primeira forma de abordagem é a Representação Algébrico-Diferencial — DAR (do inglês, Differential Algebraic Representation), aplicável a toda a classe de sistemas racionais. A segunda forma, por sua vez, consiste em uma decomposição quadrática, particular para sistemas quadráticos. Em ambos os casos, utiliza-se a não linearidade de zona morta e uma condição generalizada de setor para tratar da saturação. Para ambas representações, condições baseadas em Desigualdades Matriciais Lineares — LMIs (do inglês, Linear Matrix Inequalities) dependentes dos estados são obtidas para fornecer uma lei de controle linear, com o objetivo de estabilizar o sistema em malha fechada enquanto fornece uma região maximizada de estabilidade garantida associada a uma função de Lyapunov. A partir da mesma metodologia, são propostas técnicas de síntese de compensadores de anti-windup estáticos e dinâmicos. Exemplos numéricos são apresentados para verificar a eficácia dos métodos propostos. / This work addresses the problem of local stabilization of continuous-time quadratic systems (possibly open-loop unstable) and subject to actuator saturation. Furthermore, the work addresses a study of techniques for synthesis of anti-windup compensators for quadratic systems subject to actuator saturation. The study approach is comparative in the sense of considering two representations of quadratic systems. The first one is the Differential Algebraic Representation — DAR, suitable for the entire class of rational systems. The second representation consists in a quadratic decomposition, particular for quadratic systems. In both cases, it is used the deadzone nonlinearity and the generalized sector condition in order to deal with the saturation. For both representations, state-dependent Linear Matrix Inequalities — LMIs conditions are obtained to provide a control law with the aim of stabilize the closed-loop system while providing a region of guaranteed stability, associated to a Lyapunov function. Based on the same methodology, techniques are proposed for the synthesis of static and dynamic anti-windup compensators. Numerical examples are presented to verify the effectiveness of proposed methods.
3

Controle de sistemas quadráticos sujeitos à saturação de atuadores

Longhi, Maurício Borges January 2014 (has links)
O presente trabalho aborda o problema de estabilização local de sistemas não lineares quadráticos contínuos no tempo (possivelmente instáveis em malha aberta) e sujeitos a saturação de atuadores. Além disso o trabalho apresenta um estudo de técnicas de síntese de compensadores de anti-windup para sistemas quadráticos sujeitos à saturação de atuadores. A abordagem do estudo é comparativa em relação a duas formas de representação dos sistemas quadráticos. A primeira forma de abordagem é a Representação Algébrico-Diferencial — DAR (do inglês, Differential Algebraic Representation), aplicável a toda a classe de sistemas racionais. A segunda forma, por sua vez, consiste em uma decomposição quadrática, particular para sistemas quadráticos. Em ambos os casos, utiliza-se a não linearidade de zona morta e uma condição generalizada de setor para tratar da saturação. Para ambas representações, condições baseadas em Desigualdades Matriciais Lineares — LMIs (do inglês, Linear Matrix Inequalities) dependentes dos estados são obtidas para fornecer uma lei de controle linear, com o objetivo de estabilizar o sistema em malha fechada enquanto fornece uma região maximizada de estabilidade garantida associada a uma função de Lyapunov. A partir da mesma metodologia, são propostas técnicas de síntese de compensadores de anti-windup estáticos e dinâmicos. Exemplos numéricos são apresentados para verificar a eficácia dos métodos propostos. / This work addresses the problem of local stabilization of continuous-time quadratic systems (possibly open-loop unstable) and subject to actuator saturation. Furthermore, the work addresses a study of techniques for synthesis of anti-windup compensators for quadratic systems subject to actuator saturation. The study approach is comparative in the sense of considering two representations of quadratic systems. The first one is the Differential Algebraic Representation — DAR, suitable for the entire class of rational systems. The second representation consists in a quadratic decomposition, particular for quadratic systems. In both cases, it is used the deadzone nonlinearity and the generalized sector condition in order to deal with the saturation. For both representations, state-dependent Linear Matrix Inequalities — LMIs conditions are obtained to provide a control law with the aim of stabilize the closed-loop system while providing a region of guaranteed stability, associated to a Lyapunov function. Based on the same methodology, techniques are proposed for the synthesis of static and dynamic anti-windup compensators. Numerical examples are presented to verify the effectiveness of proposed methods.
4

Utilizando vetores na resoluÃÃo de problemas de geometria plana nas turmas olÃmpicas do ensino bÃsico / Using vectors in solving plane geometry problems in the olympic classes of basic education

Crispiano Barros UchÃa 26 June 2014 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Este trabalho à uma proposta de abordagem de problemas de geometria plana, nas turmas olÃmpicas de matemÃtica no ensino bÃsico, tendo como base o uso de vetores para resolver esses problemas. Os vetores oferecem novas ferramentas de exploraÃÃo da geometria plana e de suas propriedades. Com o uso de vetores, as demonstraÃÃes das proposiÃÃes da geometria tornam-se bem mais simples. O propÃsito à introduzir os vetores nas turmas que estÃo saindo do ensino fundamental, para o ensino mÃdio e mostrar a importÃncia dos vetores para resolver problemas de geometria plana. Usaremos, as diversas formas de representaÃÃo dos vetores e suas propriedades na demonstraÃÃo, de resultados e na resoluÃÃo de problemas de geometria. Um modelo conceitual serà postulado e fundamentado para que os alunos tenham contato com esses instrumentais. Acreditamos que fazendo a articulaÃÃo entre a representaÃÃo geomÃtrica e a representaÃÃo algÃbrica de uma forma mais natural possÃvel, o estudo da geometria plana como uso de vetores facilitarà o nÃvel de aprendizagem dos alunos, uma vez que conhecerà novas ferramentas para resolver problemas. / This work is a proposal of problems in plane geometry Olympic math classes in basic education approach based on the use of vectors to solve these problems. The arrays offer new tools for exploration of plane geometry and its properties. Using vectors demonstrations of the propositions of geometry become much simpler. The purpose is to introduce vectors into classes that are coming out of elementary school to high school and show the importance of vectors to solve problems of plane geometry. We will use various forms of representation of vectors and their properties in the income statement and solving geometry problems. A conceptual model is postulated and substantiated for students to have contact with these instruments. We believe that making the link between the geometric representation and the algebraic representation of a most natural way possible the study of plane geometry using vectors facilitate the learning level of the students, since meet new tools to solve problems.

Page generated in 0.1572 seconds