• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Odd Poisson supermanifolds, Courant algebroids, homotopy structures, and differential operators

Peddie, Matthew January 2017 (has links)
In this thesis we investigate the role of odd Poisson brackets in related areas of supergeometry. In particular we study three different cases of their appearance: Courant algebroids and their homotopy analogues, weak Poisson structures and their relation to foliated manifolds, and the structure of odd Poisson manifolds and their modular class. In chapter 2 we introduce the notion of a homotopy Courant algebroid, a subclass of which is suggested to stand as the double objects to L-bialgebroids. We provide explicit formula for the higher homotopy Dorfman brackets introduced in this case, and the higher relations between these and the anchor maps. The homotopy Loday structure is investigated, and we begin a discussion of what other constructions in the theory of Courant algebroids can be carried out in this homotopy setting. Chapter 3 is devoted to lifting a weak Poisson structure corresponding to a local foliation of a submanifold to a weak Koszul bracket, and interpreting the results in terms of the cohomology of an associated differential. This bracket is shown to produce a bracket on co-exact differential forms. In chapter 5 studies classes of second order differential operators acting on semidensities on an arbitrary supermanifold. In particular, when the supermanifold is odd Poisson, we given an explicit description of the modular class of the odd Poisson manifold, and provide the first non-trivial examples of such a class. We also introduce the potential field of a general odd Laplacian, and discuss its relation to the geometry of the odd Poisson manifold and its status as a connection-like object.
2

O algebroide classificante de uma estrutura geometrica / The classifying Lie algebroid of a geometric structure

Struchiner, Ivan 12 August 2018 (has links)
Orientadores: Rui Loja Fernandes, Luiz Antonio Barrera San Martin / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-12T16:18:57Z (GMT). No. of bitstreams: 1 Struchiner_Ivan_D.pdf: 1576350 bytes, checksum: 7c87189c22a89931d1a38ac563188723 (MD5) Previous issue date: 2009 / Resumo: O objetivo desta tese é mostrar como utilizar algebróides de Lie e grupóides de Lie para compreender aspectos das teorias de invariantes, simetrias e espaços de moduli de estruturas geométricas de tipo finito. De uma forma geral, podemos descrever tais estruturas como sendo objetos, definidos em uma variedade, que podem ser caracterizados por correferenciais (possivelmente em outra variedade). Exemplos incluem G-estruturas de tipo finito e geometrias de Cartan. Para uma classe de estruturas geométricas de tipo finito cujo espaço de moduli (dos germes) de seus elementos tem dimensão finita, construímos um algebróide de Lie A X, chamado de algebróide de Lie classificante, que satisfaz as seguintes propriedades: 1. Para cada ponto na base X corresponde um germe de uma estrutura geométrica pertencente à classe. 2. Dois destes germes são isomorfos se e somente se eles correspondem ao mesmo ponto de X. 3. A álgebra de Lie de isotropia de A num ponto x é a álgebra de Lie das simetrias infinitesimais da estrutura geométrica correspondente. 4. Se dois germes de estruturas geométricas pertencem à mesma estrutura geométrica global numa variedade conexa, então eles correspondem a pontos na mesma órbita de A em X. Além do mais, quando o algebróide de Lie classificante é integrável, o seu grupóide de Lie pode ser utilizado para construir modelos explícitos das geometrias na classe sendo descrita. Estes modelos são universais, ou seja, qualquer outra estrutura geométrica da classe é localmente isomorfa a um destes modelos, e globalmente equivalentes, a menos de recobrimento, a um subconjunto aberto de um desses modelos. No caso em que a estrutura geométrica é uma G-estrutura de tipo finito, damos uma descrição detalhada dessa correspondência. Uma das conseqüências da nossa construção é que o algebróide de Lie classificante pode ser usado para obter invariantes das estruturas geométricas correspondentes. Para ilustrar, apresentamos dois exemplos de invariantes que são induzidos pela cohomologia do algebróide de Lie. Para demonstrar os resultados mencionados acima, definimos as noções de forma de Maurer-Cartan em grupóides de Lie e de equação de Maurer-Cartan para um formas diferenciais com valores num algebróide de Lie. A seguir, provamos que a forma de Maurer-Cartan em um grupóide de Lie satisfaz uma propriedade universal análoga à propriedade satisfeita pela forma de Maurer-Cartan em um grupo de Lie. Para concluir esta tese, descrevemos diversos exemplos relacionados as conexões sem torção em G-estruturas. Nossa classe principal de exemplos são as conexões simpléticas especiais para as quais incluímos uma discussão detalhada. / Abstract: The purpose of this thesis is to show how to use Lie algebroids and Lie groupoids to get a better understanding of problems concerning symmetries, invariants and moduli spaces of geometric structures of finite type. In general terms, these structures are objects defined on manifolds which can be characterized by a coframe (on a possibly different manifold). Examples include G-structures of finite type and Cartan geometries. For a given class of such structures whose moduli space (of germs) of elements is finite dimensional, we are able to construct a Lie algebroid A ! X, called the classifying Lie algebroid, which has the following properties: 1. To each point on the base X there corresponds a germ of a geometric structure which belongs to the class. 2. Two such germs are isomorphic if and only if they correspond to the same point in X. 3. The isotropy Lie algebra of A at a point x is the symmetry Lie algebra of the corresponding geometric structure. 4. If two germs of the geometric structure belong to the same connected manifold, then they correspond to points on the same orbit of A in X. Moreover, when the classifying Lie algebroid is integrable, its Lie groupoid can be used to construct explicit models of the geometries in the class being described. These models turn out to be universal in the sense that every other geometric structure in the class is locally isomorphic to one of these models, and globally equivalent up to covering to an open set of one of these models. We describe this throughly when the geometric structure in consideration is a finite type G-structure. One of the consequences of our construction is that the classifying Lie algebroid can be used to obtain invariants of the corresponding geometric structures. We present two examples of invariants that are induced by the cohomology of the Lie algebroid. The method that we use to prove the statements above is to define the notion of a Maurer-Cartan form on a Lie groupoid, as well as a Maurer-Cartan equation for Lie algebroid valued differential one forms. We then prove a universal property for the Maurer-Cartan form of a Lie groupoid. We believe that these results are of independent interest. To conclude this thesis, we give a description of several examples related to torsionfree connections on G-structures. Our main class of examples are the special symplectic connections for which we include a detailed discussion. / Doutorado / Geometria Diferencial / Doutor em Matemática
3

Generalized geometry of type Bn

Rubio, Roberto January 2014 (has links)
Generalized geometry of type B<sub>n</sub> is the study of geometric structures in T+T<sup>&ast;</sup>+1, the sum of the tangent and cotangent bundles of a manifold and a trivial rank 1 bundle. The symmetries of this theory include, apart from B-fields, the novel A-fields. The relation between B<sub>n</sub>-geometry and usual generalized geometry is stated via generalized reduction. We show that it is possible to twist T+T<sup>&ast;</sup>+1 by choosing a closed 2-form F and a 3-form H such that dH+F<sup>2</sup>=0. This motivates the definition of an odd exact Courant algebroid. When twisting, the differential on forms gets twisted by d+F&tau;+H. We compute the cohomology of this differential, give some examples, and state its relation with T-duality when F is integral. We define B<sub>n</sub>-generalized complex structures (B<sub>n</sub>-gcs), which exist both in even and odd dimensional manifolds. We show that complex, symplectic, cosymplectic and normal almost contact structures are examples of B<sub>n</sub>-gcs. A B<sub>n</sub>-gcs is equivalent to a decomposition (T+T<sup>&ast;</sup>+1)<sub>&Copf;</sub>= L + L + U. We show that there is a differential operator on the exterior bundle of L+U, which turns L+U into a Lie algebroid by considering the derived bracket. We state and prove the Maurer-Cartan equation for a B<sub>n</sub>-gcs. We then work on surfaces. By the irreducibility of the spinor representations for signature (n+1,n), there is no distinction between even and odd B<sub>n</sub>-gcs, so the type change phenomenon already occurs on surfaces. We deal with normal forms and L+U-cohomology. We finish by defining G<sup>2</sup><sub>2</sub>-structures on 3-manifolds, a structure with no analogue in usual generalized geometry. We prove an analogue of the Moser argument and describe the cone of G<sup>2</sup><sub>2</sub>-structures in cohomology.
4

Quantum transformation groupoids : an algebraic and analytical approach / Groupoïdes quantiques de transformations : une approche algébrique et analytique

Taipe Huisa, Frank 11 December 2018 (has links)
Cette thèse porte sur la construction d'une famille de groupoïdes quantiques de transformations qui dans le cadre algébrique sont des algébroïdes de Hopf de multiplicateurs mesurés au sens de Timmermann et Van Daele et qui dans le cadre des algèbres d'opérateurs sont des C*-bimodules de Hopf sur une C*-base au sens de Timmermann.Dans le contexte purement algébrique, nous définissons d'abord une algèbre involutive de Yetter-Drinfeld tressée commutative sur un groupe quantique algébrique au sens de Van Daele et une intégrale de Yetter-Drinfeld sur elle. En utilisant ces objets nous construisons après un algébroide de Hopf de multiplicateurs involutif mesuré, ce nouvel objet nous l'appellons groupoïde quantique algébrique de transformations.Pour être capables de passer au cadre des algèbres d'opérateurs, nous donnons des conditions sur l'intégral de Yetter-Drinfeld qui vont nous permettre d'utiliser la construction Gelfand–Naimark–Segal pour étendre tous nos objets purement algébriques en des objets C*-algébriques. Dans ce contexte, notre construction se fait d'une manière similaire à celle présentée dans le travail de Enock et Timmermann, nous obtenons un nouvel objet mathématique que nous appellons un groupoïde quantique C*-algébrique de transformations, qui est définit en utilisant le langage des C*-bimodules de Hopf sur une C*-base. / This thesis is concerned with the construction of a family of quantum transformation groupoids in the algebraic framework in the form of the measured multiplier Hopf *-algebroids in the sense of Timmermann and Van Daele and also in the context of operator algebras in the form of Hopf C*-bimodules on a C*-base in the sense of Timmermann.In the purely algebraic context, we first give a definition of a braided commutative Yetter-Drinfeld *-algebra over an algebraic quantum group in the sense of Van Daele and a Yetter-Drinfeld integral on it. Then, using these objects we construct a measured multiplier Hopf *-algebroid, we call to this new object an algebraic quantum transformation groupoid.In order to pass to the operator algebra framework, we give some conditions on the Yetter-Drinfeld integral inspired by the properties of KMS-weights on C*-algebras which will allow us to use the Gelfand–Naimark–Segal construction to extend all the purely algebraic objects to the C*-algebraic level. At this level, we construct in a similar way to that used in the work of Enock and Timmermann, a new mathematical object that we call a C*-algebraic quantum transformation groupoid, which is defined using the language of Hopf C*-bimodules on C*-bases.

Page generated in 0.0227 seconds