• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 108
  • 102
  • 44
  • 15
  • 12
  • 8
  • 7
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 347
  • 84
  • 51
  • 51
  • 38
  • 35
  • 34
  • 32
  • 31
  • 30
  • 25
  • 22
  • 21
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

ROLE OF CRC IN THE REGULATION OF ALGINATE IN PSEUDOMONAS AERUGINOSA

Alam, Arfeen 26 July 2013 (has links)
As Pseudomonas aeruginosa adapts to the Cystic Fibrosis (CF) and chronic obstructive pulmonary disease (COPD) lung environments, mucoid strains often appear as a result of alginate overproduction. Such mucoid conversion is associated with the establishment of a chronic pulmonary infection. Alginate confers resistance to phagocytosis and has other pathogenic properties. The regulation of alginate production is complex and involves an alternate sigma factor, anti-sigmas and several DNA-binding transcriptional regulators. Here we examined the possibility that the catabolic repression control (Crc) protein repressor may affect alginate gene expression. A putative Crc binding site was observed adjacent to the ribosome binding site of algD, the first gene in the 12-gene alginate biosynthetic operon. We hypothesized that Crc binding here would act as a repressor of algD expression. Taking a genetic approach, Gateway technology was used to construct crc::GmR (nonpolar) mutants of P. aeruginosa strain PAO1 and its mucoid (mucA) mutant derivative, PDO300. The crc mutation had the expected phenotypes with respect to pyocyanin production, biofilm formation and diauxic growth. When a PalgD-lacZ (translational) fusion was tested, the crc mutant showed increased algD expression as predicted for a mRNA-binding repressor. Another Ptrc-algD-lacZ (translational) construct, but missing the upstream promoter (PalgD) elements, also showed increased activity in crc mutants as predicted if Crc was acting directly as a repressor of algD transcriptional / translational expression. However, this was not consistent with the production of alginate. The crc mutant of mucoid PDO300 showed lower levels of alginate production than its parent strain. Under conditions were the algD operon was induced by ammonium metavanadate in the growth medium to produce alginate, the crc mutation again resulted in a lower level of alginate production than wild-type, which was again inconsistent with the algD-lacZ expression data. This suggests that crc mutation, which has global effects on carbon flow in the cell, could be affecting metabolic pathways that feed precursors into the alginate biosynthetic pathway. Future directions for this research are discussed.
22

Substratos alternativos para a produção de poli-hidroxibutirato e alginato por Azotobacter vinelandii

Silva, Adriana Navarro da [UNESP] 16 March 2012 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:31:03Z (GMT). No. of bitstreams: 0 Previous issue date: 2012-03-16Bitstream added on 2014-06-13T20:01:30Z : No. of bitstreams: 1 silva_an_dr_sjrp.pdf: 845355 bytes, checksum: bf12e08f381ee2126b3f6f0827cd993a (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Atualmente a destinação do lixo é uma das grandes preocupações da organização urbana e os problemas ambientais causados pela produção e acúmulo de materiais plásticos de origem petroquímica têm incentivado muitos países a realizarem estudos de gerenciamento do volume de lixo sólido, incluindo a diminuição de resíduos plásticos por meio do desenvolvimento de bioplásticos. Os bioplásticos possuem propriedades semelhantes às dos plásticos convencionais e apresentam a vantagem de serem facilmente degradados pela ação de microrganismos no ambiente, podendo citar como exemplo os poli-hidroxialcanoatos (PHA), dentre eles o poli-hidroxibutirato (PHB). Estes polímeros podem representar até 80% da massa seca total da célula, tendo como característica principal a biodegradabilidade em solos e a biocompatibilidade com o tecido animal. Entre os microrganismos produtores de PHAs, a bactéria Azotobacter vinelandii pode acumular grandes quantidades de PHB intracelular com a vantagem de utilizar durante seu crescimento uma ampla variedade de açúcares como os encontrados em melaço de cana-de-açúcar, beterraba e xarope de milho, além de resíduos da suinocultura, agroindustriais, etc. Além do PHB, a bactéria A. vinelandii é capaz de produzir alginato, composto muito empregado na área de análogos de frutas ou produtos tipo imitação como: fatias de pimentão para recheios de azeitonas, imitação de anéis de cebola, imitações de caviar, carne, pescados, produtos marinhos, etc. Tendo em vista que os principais fatores limitantes para a produção de biopolímeros estão associados, principalmente, com os custos dos substratos e ao fato de que muitos microrganismos são patogênicos dificultando a sua aceitação pela comunidade em geral, este trabalho teve como objetivo utilizar... / Currently, the waste disposal is a major concern of urban organization and the environmental problems caused by production and accumulation of petrochemical plastics have encouraged many countries to management studies of the solid waste volume, including the waste plastics reduction through the bioplastics development. Bioplastics have similar properties to conventional plastics and the advantage of being easily degraded by the microorganisms action in the environment, for example, poly-hydroxyalcanoatos (PHA), including poly-hydroxybutyrate (PHB). These polymers can represent up to 80% of total dry mass of the cell, having as main feature the biodegradability in soil and the biocompatibility with animal tissue. Among the microorganisms producing PHAs, the bacterium Azotobacter vinelandii can accumulate large amounts of intracellular PHB with the advantage that they grow a wide sugars variety like those found in molasses cane sugar, beet sugar and corn syrup, and swine waste, agribusiness, etc.. Besides the PHB, the bacterium A. vinelandii is able to produce alginate, a very useful compound in the similar area of type of fruit and imitation as sliced peppers for stuffing olives, onion rings imitation, caviar, meat, fish and marine products imitation, etc.. Given that the main limiting factors for the biopolymers production are mainly associated with the substrates costs and the fact that many microorganisms are pathogenic hindering its acceptance by the community in general, this study aimed to use the pollutant by-products environment (residual oil frying, glycerin, cassava wastewater – “manipueira”, vinasse and wastewater industry carbonated beverages or soft drinks) as a substrate for the poly-hydroxybutyrate and alginate production by non-pathogenic bacterium Azotobacter vinelandii. Fermentations... (Complete abstract click electronic access below)
23

Werkstoffkundlich vergleichende Untersuchung mechanischer Eigenschaften von Alginaten und Alginatersatzmaterialien / Study comparing mechanical porperties in alginates and alginate substitutes

Beyer, Thomas Steffen January 2014 (has links) (PDF)
In den vergangenen Jahren wurden vermehrt sogenannte Alginatersatzmaterialien für Indikationsbereiche entwickelt, für die bislang hauptsächlich Alginate verwendet wurden. In dieser in-vitro Studie wurden acht Alginatersatzmaterialien auf Basis von additionsvernetzenden Silikonen und vier Alginate auf ausgewählte mechanische Werkstoffeigenschaften hin untersucht, um beide Materialarten zu vergleichen und daraus Anwendungsempfehlungen ableiten zu können. Die getesteten Alginate waren Alginoplast Regular Set, Blueprint XCreme, Jeltrate Regular Set und Xantalgin select Fast Set. Die getesteten A-Silikone waren AlgiNot FS Cartridge und Volume, AlginX Ultra Cartridge, Position Penta, Silginat, Status Blue, Xantasil Cartridge und Dynamix fast set. Dabei wurden folgenden Materialeigenschaften untersucht: Verformung unter Druck, Rückstellung nach Verformung, Detailwiedergabegenauigkeit, Dimensionsstabilität, Reißfestigkeit, -dehnung, -energie, Toughness, E-Modul und Homogenität. Die Messverfahren, die verwendet wurden, sind in den Normen DIN EN ISO 4823, DIN EN 21563 und DIN 53504 beschrieben. Zur Messung der Dimensionsstabilität wurde ein neues Verfahren angewendet. Der Vergleich der Homogenität richtete sich nach rein optischen Kriterien der abgebundenen Abformmaterialien. Die Ergebnisse zeigen, dass die getesteten Alginatsubstitute gegenüber den Alginaten vorteilhafte Eigenschaften besitzen. Alginate sind gegenüber äußeren Kräften nicht annähernd so widerstandsfähig wie Silikone und lassen sich bei gleicher Krafteinwirkung stärker komprimieren (Verformung unter Druck). Alginate sind leichter, aber weniger weit dehnbar (Reißdehnung). Die Alginate reißen bei deutlich geringerer Zugbelastung (Reißfestigkeit), vor allem in Bereichen, in denen das Abformmaterial nur dünn ausgelaufen ist (Toughness). Die elastische Rückstellungsrate der Alginate und von AlgiNot nach Druckbelastung liegt zwar noch im Normbereich, ist jedoch deutlich geringer als bei den anderen Silikonen, welche eine nahezu vollständige Rückstellung aufweisen. Sowohl Silikone als auch Alginate sind prinzipiell in der Lage, auch feinste Strukturen von 20µm Breite gut abzuformen (Detailwiedergabegenauigkeit). Der Versuch zur Messung der Dimensionsänderung zeigt, dass Alginatabformungen selbst unter optimalen Lagerungsbedingungen bereits nach weniger als 24 Stunden so stark geschrumpft sind, dass es ratsam ist die Abformung zu wiederholen. Die Silikone können mit Ausnahme von Silginat mindesten 14 Tage gelagert werden. Für Silginatabformungen wird eine Lagerungsdauer von maximal sieben Tagen empfohlen. Die Beobachtungen zur Homogenität der angemischten Materialien lassen schließen, dass Silikone bei Verwendung von Automischmaschinen besser und gleichmäßiger vermischt werden. Aufgrund der besseren Materialeigenschaften eignen sich Alginatsubstitute vor allem für Abformungen, die über längere Zeit gelagert werden müssen, bevor ein Gipsmodell hergestellt werden kann und haben den Vorteil, dass aus einer Abformung mehrere Modelle hergestellt werden können. Für die meisten Indikationen genügen die Eigenschaften der Alginate zur Herstellung hinreichend genauer Modelle. Alginate haben außerdem den Vorteil, dass Abformungen mit deutlich geringerer Kraft aus dem Mund entnommen werden können. / Over the last decade, an increasing number of alginate substitutes have been developed for use in areas where alginates had dominated so far. This in-vitro study examined eight alginate substitutes on the basis of addition-silicones and four alginates for selected mechanical properties in order to draw a comparison between both types of material and give recommendations for application. Alginates examined were Alginoplast Regular Set, Blueprint XCreme, Jeltrate Regular Set, and Xantalgin select Fast Set. A-silicones examined were AlgiNot FS Cartridge und Volume, AlginX Ultra Cartridge, Position Penta, Silginat, Status Blue, Xantasil Cartridge, and Dynamix fast set. The following properties were assessed: Strain in compression, elastic recovery, detail reproduction, linear dimensional change, tear strength, elongation at break, toughness, modulus of elasticity, and homogeneity. Measuring methods used are described in DIN standards EN ISO 4823, EN 21563, and 53504. In order to examine dimensional stability, a new method was applied. Comparisons of homogeneity were based on visual criteria regarding set impression materials. Results indicate that between the two tested material groups, alginate substitutes appear superior to alginates. Alginates are less resilient to external forces than silicones and confronted with equal pressure, they compress more quickly (strain in compression). Alginates expand more easily but to a lesser degree (elongation at break). Tear strength in alginates is considerably lower, especially in areas, where there is merely a thin layer of impression material (toughness). Elastic recovery of alginates and AlginNot after compression is within normal range, but substantially lower than with other silicones, with the latter recovering almost completely. Both silicones and alginates can in principle mould finest textures of 20µm width (detail reproduction). The test for linear dimensional change shows that even under optimum storage conditions, within less than 24 hours, alginate impressions have shrunk so strongly that moulding should be repeated. With the exception of Silginat, silicones can be stored for a minimum of 14 days. Silginat impressions are recommended to be stored for up to seven days. Observations concerning homogeneity of mixed materials suggest that automatic mixing leads to better and more evenly mixed silicones. Due to superior properties, alginate substitutes are particularly suitable for impressions which are to be stored for a longer period of time before a plaster model can be produced. A further advantage is the possibility to produce more than one model from an impression. Alginate properties suffice for the production of adequate models regarding most indications. Moreover they can be removed with considerably less force.
24

An Investigation of the Dimensional Stability of Dental Alginates

Nichols, Paul Vincent January 2006 (has links)
Master of Science (Dentistry) / Dimensional stability was defined by Nicholls (1977) as “the ability (of a material) to maintain accuracy over time”, and the result of loss of accuracy, “distortion”, as “the relative movement of a single point, or group of points, away from some originally specified reference position such that permanent deformation is apparent”. Maintaining dimensional stability of dental impression materials is vital if the impression cannot be cast (in stone) soon after removal from the mouth. Dental irreversible hydrocolloid (alginate) is a major dental impression material used worldwide in many clinical procedures. However, alginate is dimensionally unstable and changes its dimensions (suffers “distortion”) after removal from the mouth. With storage times of more than ten minutes, alginate begins to distort, and after one to three hours (depending on the product and storage conditions) cannot be used for many clinical purposes, especially fixed prosthodontics such as crowns and bridges (Hampson 1955, Skinner & Hoblit 1956, Wilson & Smith 1963, Rudd et al. 1969, Miller 1975, Inohara 1977, Schoen et al. 1978, Coleman et al. 1979, Linke et al. 1985, Habu et al. 1986, Peutfeldt & Asmussen 1989, Mathilde & Peters 1992, Khan & Aziz Sahu 1995, Eriksson et al. 1998, Schleier et al. 2001, and Donovan & Chee 2004). This loss of accuracy, due to dimensional instability, manifests as a time-dependent distortion of the poured stone cast, and thus any prosthesis fabricated will not fit in the mouth. With the introduction of the more stable elastomers in the 1950s (Stackhouse 1970, Glenner 1997, Brown 2003) that could be stored for days if necessary, without loss of accuracy, the alginates fell out of favour for fixed prosthodontics. Recently, there has been a resurgence of interest in alginate for use in dental procedures where dimensional stability is critical (Peutzfeldt and Asmussen 1989, Eriksson et al. 1998). This in part is due to the favourable properties of alginate not found in the elastomers. Of greatest significance is that alginate hydrocolloid is hydrophilic, whereas elastomers are hydrophobic (Phillips & Ito 1958, Glenner 2004). Thus, alginate materials are able to reproduce wet oral areas with greater precision and to produce a superior "fit" of, say, a gold casting produced by the Lost Wax technique (Skinner and Phillips 1982). A number of reports have been published which investigate newer alginate materials that are claimed to be more dimensionally stable than older formulations. Puetzfeldt and Asmussen (1989) found that a newer alginate , if stored at 100% relative humidity, retained accuracy over 24 hours that was equivalent to that of the elastomers. More recently, the manufacturer of another alginate has claimed equivalent dimensional stability to the elastomers for up to 100 hours, and, whilst this claim has not been reported on in the literature, the present thesis will show that, under favourable conditions of storage, the material maintained clinically useful accuracy for up to 100 hours. Another approach to improving the accuracy of alginate impressions has been to combine reversible hydrocolloid with alginate (the “Bilaminar” technique). Frederick and Caputo (1997) confirmed that the new agar reversible hydrocolloids are just as accurate (at the time of removal from the mouth) as the new elastomers. Mathilde et al. (1992) and Eriksson et al. (1998) have shown that several of the “bilaminar” impression techniques for fixed prosthodontics, where alginate is used as a tray material supporting a reversible hydrocolloid (agar) wash, are as accurate and dimensionally stable as elastomers for up to three hours. However, these studies are difficult to interpret due to lack of uniformity in the testing methods, and the fact that there is no regulatory standard available to measure dimensional stability for dental alginates. The International Standard (IS) for alginate impression materials (ISO 1563:1990E) contains no specification for dimensional stability, and thus places no requirement for manufacturers to state dimensional stability properties on their labels. In contrast, ISO 4823:1992(E) specifies the IS for elastomeric dental impression materials, and it does specify a requirement for dimensional stability (less than 1.5% distortion after 24 hours). Further, the IS sets a method for determination of dimensional stability. Briefly, this method (the Optical Method) uses a travelling optical microscope to measure the accuracy of the distance between score lines on an impression of a test grid, at various time periods. The American Dental Association Specification No. 19 for dental elastomeric impression materials is identical to the IS. There is currently no specific Australian Standard (AS) for the dimensional stability of any dental impression material. Overview of Experimental Methods A. The Optical Method The aim of Part A of this investigation was to: 1. Adapt the Optical Method of the IS for elastomers to be reproducible for dental alginates. This was achieved by using a perforated test tray (to simulate clinical conditions), and measuring the grid pattern on a dental stone button after casting the test impression, rather than direct measurement of the impression, as for the IS. 2. To measure and rank the dimensional stability of a number of locally available dental alginates. Measurements of the test stone buttons proved reproducible, and the results were different for each sample, allowing them to be ranked according to dimensional stability after 50 and 100 hours of storage. The results show that the traditional optical method for measuring dimensional stability, as specified in the IS for dental elastomers, can be adapted to measure the dimensional stability of dental alginates However, the Optical Method of measuring dimensional stability of dental alginates is cumbersome and time-consuming. It was hypothesised that dimensional stability of dental alginates could be measured more conveniently by finding a thermal property that is directly proportional to dimensional stability. This method could be useful for the rapid determination of relative performance, and allow comparison with a determined benchmark. B. The Thermal Method Recently, modern methods of Thermal Analysis, Thermal Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) have been used to rapidly age various polymers, including food alginates (Chinachoti 1996), in order to measure thermal stability. This thesis shows that thermal stability is an indicator of dimensional stability. The aim of Part B of this investigation was therefore to adapt thermal analysis techniques to dental alginates, and develop a method to measure their thermal stability. These results were then compared with those for dimensional stability measured by the Optical Method to determine the relationship between thermal and dimensional stability for dental alginates. The results show that current thermal analysis methods of TGA and DSC can be adapted to measure relative dental alginate dimensional stability, and are both rapid and convenient. This study also provides evidence that commercial products differ as regards the property of dimensional stability, and can be ranked accordingly. C. Practical Application of the Methods The aim of part C of this thesis was to validate the methods (both optical and thermal) developed in this study by using them to investigate the effect of varying the water/powder ratio on the dimensional stability of dental alginates. It was shown that dimensional stability is affected by changes to the recommended water/powder ratio, that both the methods detected and measured the changes, and that the results were proportional, in that any percentage change detected by the optical method, was mirrored by the thermal method, confirming that the more convenient thermal methods can be used to measure dimensional stability.
25

CONTROLLED SYNTHESIS OF STIMULI-RESPONSIVE NETWORK ALGINATE

Chan, ARIEL WAN-JU 20 July 2009 (has links)
Stimuli-responsive hydrogels swell or contract in response to external pH, ionic strength or temperature, and are of considerable interest as pharmaceutical controlled release devices. Alginate, a linear polysaccharide consisting of mannuronic and guluronic acids, was used as starting material in semisynthesis of pH-responsive hydrogel. Linear alginate was chemically modified with di-aldehyde via acid-catalyzed acetalization, forming a tetrafunctional acetal-linked semisynthetic network alginate polymer (SNAP) with carboxylate moieties preserved as stimuli-responsive sensors. The kinetics of acetalization were found to undergo zero and second-order reaction with respect to di-aldehyde and alginate respectively. With the determined rate constant of 19.06 L•mole-1•s-1 at 40oC and activation energy of 78.58 kJ•mol-1, a proposed predictive reaction model may be used a priori to select reaction conditions providing specific polymer properties. Gel swelling and average pore size were then able to be kinetically or thermodynamically controlled between 80-1000 fold and 30 nm-1 m respectively. As a proof of concept, SNAP hydrogel was fine-tuned with specific swelling and pore sizes for absorptive encapsulation and controlled release of a wide spectrum of molecular sizes of proteins ranging between 1.3 to 546 kDa. SNAP hydrogels/granules demonstrated limited swelling in the simulated gastric environment, protecting proteins from enzymatic and acid degradation, while swelling in alkaline media, releasing active therapeutics in a simulated intestinal lumen (pH ~ 7.8), so is under the consideration as an oral delivery vehicle for protein therapeutics. A constitutive polyelectrolyte gel model based on non-Gaussian polymer elasticity, Flory-Huggins liquid lattice theory, and non-ideal Donnan-membrane equilibria was derived, to describe SNAP gel swelling in dilute and ionic solutions. The derived model accurately describes the SNAP hydrogel swelling in acid and alkaline solutions of wide range of ionic strength. The pore sizes of SNAP hydrogel were estimated by the derived model and were comparable to those determined experimentally by thermoporometry and protein diffusion. The derived model can characterize hydrogel structure such as molecular weight between crosslinks, or can be used as predictive model for swelling and pore size if gel structural information is known, and can potentially be applied to other point-link network polyelectrolytes such as hyaluronic acid gel. / Thesis (Ph.D, Chemical Engineering) -- Queen's University, 2009-07-20 11:48:17.508
26

Alginate Microparticles Produced by Spray Drying for Oral Insulin Delivery

Bowey, KRISTEN 29 September 2009 (has links)
The aim of this study was to prepare biologically active insulin-loaded alginate microparticles by spray drying. Particles were produced from three alginate feed concentrations of 1, 1.5 and 2% w/v, with respective insulin loadings of 11.8, 7.8 and 5.8 mg/g of alginate and investigated in terms of mass yield, moisture content, particle size, morphology and encapsulation efficiency. The mass yield of the system was determined to be between 15 and 30%, with approximately 3% of the initial dry mass ending up in the exhaust filter. The moisture content of the particles was found to be between 4.9 and 11.1% and the mean size ranged between 1.2 and 1.6 μm. Particulate morphologies were observed to be mostly spherical with some ‘divots’ present on the surface. Lastly, the encapsulation efficiency determined by absorbance assay was approximately 40%. Particles produced from a 2% alginate feed were further assayed by determining the release of insulin in simulated gastrointestinal conditions and looking at the insulin and alginate distribution within spray dried particles. A steep release profile was observed in the first 120 min of the simulation in a gastric pH of 1.2 and a longer, more sustained release is observed in intestinal conditions, where an additional 20% of the total insulin in the particles is released over 600 min. Fluorescent labels revealed that insulin and alginate are concentrated towards the periphery of the particles. The residual bioactivity of insulin was assessed by an in vitro bioactivity assay, which was developed using Fast Activated Cell Based ELISA (FACE™) AKT kits specific for phosphylated AKT. The bioactivity of insulin in the particles after spray drying was determined to be 87.9 ± 15.3%. / Thesis (Master, Chemical Engineering) -- Queen's University, 2009-09-20 20:32:29.103
27

An Investigation of the Dimensional Stability of Dental Alginates

Nichols, Paul Vincent January 2006 (has links)
Master of Science (Dentistry) / Dimensional stability was defined by Nicholls (1977) as “the ability (of a material) to maintain accuracy over time”, and the result of loss of accuracy, “distortion”, as “the relative movement of a single point, or group of points, away from some originally specified reference position such that permanent deformation is apparent”. Maintaining dimensional stability of dental impression materials is vital if the impression cannot be cast (in stone) soon after removal from the mouth. Dental irreversible hydrocolloid (alginate) is a major dental impression material used worldwide in many clinical procedures. However, alginate is dimensionally unstable and changes its dimensions (suffers “distortion”) after removal from the mouth. With storage times of more than ten minutes, alginate begins to distort, and after one to three hours (depending on the product and storage conditions) cannot be used for many clinical purposes, especially fixed prosthodontics such as crowns and bridges (Hampson 1955, Skinner & Hoblit 1956, Wilson & Smith 1963, Rudd et al. 1969, Miller 1975, Inohara 1977, Schoen et al. 1978, Coleman et al. 1979, Linke et al. 1985, Habu et al. 1986, Peutfeldt & Asmussen 1989, Mathilde & Peters 1992, Khan & Aziz Sahu 1995, Eriksson et al. 1998, Schleier et al. 2001, and Donovan & Chee 2004). This loss of accuracy, due to dimensional instability, manifests as a time-dependent distortion of the poured stone cast, and thus any prosthesis fabricated will not fit in the mouth. With the introduction of the more stable elastomers in the 1950s (Stackhouse 1970, Glenner 1997, Brown 2003) that could be stored for days if necessary, without loss of accuracy, the alginates fell out of favour for fixed prosthodontics. Recently, there has been a resurgence of interest in alginate for use in dental procedures where dimensional stability is critical (Peutzfeldt and Asmussen 1989, Eriksson et al. 1998). This in part is due to the favourable properties of alginate not found in the elastomers. Of greatest significance is that alginate hydrocolloid is hydrophilic, whereas elastomers are hydrophobic (Phillips & Ito 1958, Glenner 2004). Thus, alginate materials are able to reproduce wet oral areas with greater precision and to produce a superior "fit" of, say, a gold casting produced by the Lost Wax technique (Skinner and Phillips 1982). A number of reports have been published which investigate newer alginate materials that are claimed to be more dimensionally stable than older formulations. Puetzfeldt and Asmussen (1989) found that a newer alginate , if stored at 100% relative humidity, retained accuracy over 24 hours that was equivalent to that of the elastomers. More recently, the manufacturer of another alginate has claimed equivalent dimensional stability to the elastomers for up to 100 hours, and, whilst this claim has not been reported on in the literature, the present thesis will show that, under favourable conditions of storage, the material maintained clinically useful accuracy for up to 100 hours. Another approach to improving the accuracy of alginate impressions has been to combine reversible hydrocolloid with alginate (the “Bilaminar” technique). Frederick and Caputo (1997) confirmed that the new agar reversible hydrocolloids are just as accurate (at the time of removal from the mouth) as the new elastomers. Mathilde et al. (1992) and Eriksson et al. (1998) have shown that several of the “bilaminar” impression techniques for fixed prosthodontics, where alginate is used as a tray material supporting a reversible hydrocolloid (agar) wash, are as accurate and dimensionally stable as elastomers for up to three hours. However, these studies are difficult to interpret due to lack of uniformity in the testing methods, and the fact that there is no regulatory standard available to measure dimensional stability for dental alginates. The International Standard (IS) for alginate impression materials (ISO 1563:1990E) contains no specification for dimensional stability, and thus places no requirement for manufacturers to state dimensional stability properties on their labels. In contrast, ISO 4823:1992(E) specifies the IS for elastomeric dental impression materials, and it does specify a requirement for dimensional stability (less than 1.5% distortion after 24 hours). Further, the IS sets a method for determination of dimensional stability. Briefly, this method (the Optical Method) uses a travelling optical microscope to measure the accuracy of the distance between score lines on an impression of a test grid, at various time periods. The American Dental Association Specification No. 19 for dental elastomeric impression materials is identical to the IS. There is currently no specific Australian Standard (AS) for the dimensional stability of any dental impression material. Overview of Experimental Methods A. The Optical Method The aim of Part A of this investigation was to: 1. Adapt the Optical Method of the IS for elastomers to be reproducible for dental alginates. This was achieved by using a perforated test tray (to simulate clinical conditions), and measuring the grid pattern on a dental stone button after casting the test impression, rather than direct measurement of the impression, as for the IS. 2. To measure and rank the dimensional stability of a number of locally available dental alginates. Measurements of the test stone buttons proved reproducible, and the results were different for each sample, allowing them to be ranked according to dimensional stability after 50 and 100 hours of storage. The results show that the traditional optical method for measuring dimensional stability, as specified in the IS for dental elastomers, can be adapted to measure the dimensional stability of dental alginates However, the Optical Method of measuring dimensional stability of dental alginates is cumbersome and time-consuming. It was hypothesised that dimensional stability of dental alginates could be measured more conveniently by finding a thermal property that is directly proportional to dimensional stability. This method could be useful for the rapid determination of relative performance, and allow comparison with a determined benchmark. B. The Thermal Method Recently, modern methods of Thermal Analysis, Thermal Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) have been used to rapidly age various polymers, including food alginates (Chinachoti 1996), in order to measure thermal stability. This thesis shows that thermal stability is an indicator of dimensional stability. The aim of Part B of this investigation was therefore to adapt thermal analysis techniques to dental alginates, and develop a method to measure their thermal stability. These results were then compared with those for dimensional stability measured by the Optical Method to determine the relationship between thermal and dimensional stability for dental alginates. The results show that current thermal analysis methods of TGA and DSC can be adapted to measure relative dental alginate dimensional stability, and are both rapid and convenient. This study also provides evidence that commercial products differ as regards the property of dimensional stability, and can be ranked accordingly. C. Practical Application of the Methods The aim of part C of this thesis was to validate the methods (both optical and thermal) developed in this study by using them to investigate the effect of varying the water/powder ratio on the dimensional stability of dental alginates. It was shown that dimensional stability is affected by changes to the recommended water/powder ratio, that both the methods detected and measured the changes, and that the results were proportional, in that any percentage change detected by the optical method, was mirrored by the thermal method, confirming that the more convenient thermal methods can be used to measure dimensional stability.
28

Efficiencies of Mass Encapsulation in Alginate of Vegetative Explants

George, Laurie J. 01 December 2015 (has links)
‘Lord Baltimore’ hardy hibiscus (Hibiscus moscheutos L.) was used in the mass encapsulation protocol, rinsing effects on bulk encapsulation, growth comparisons using K-NAA, acclimatization to greenhouse environment, and leaf anatomy comparisons. Nodal segments, each containing a single axillary bud, were harvested and cut to 4mm prior to mass encapsulation. Results showed that using 2.75% alginate with a concentration of 60 or 80 mM calcium chloride produced an alginate mass, or “cookie”, which was able to hold together during rinsing protocols. The rinsing study resulted with the potential to reduce rinse times from 2 three-minute rinses to 1 one-minute rinse. After 4 weeks under mist, ~58% of root growth was generated when using 1 one-minute rinse. After 8 weeks under mist, the greatest percentage of shoot and root growth occurred when using 1 one-minute rinse. The use of K-NAA in the gel matrix, after four weeks, resulted in no discernable differences. Concentrations of 0 or 0.1 µM will generate a greater percentage of shoot and root growth. Using 1.0 µM K-NAA, and extending the time under mist to 8 weeks, will result in a greater percentage of shoots and roots generated. Acclimatization study investigated the survival rates on mass encapsulated nodal segments, looking at different media, depth of planting and humidity. Increases in shoot lengths can be expected up to 8 weeks under mist and planted either on top or 1 cm deep. A reduction in root growth was seen when placed on top of the medium after 4 weeks. The anatomical study found differences in the leaf cell lengths based on the stage of leaf development. However, there was no indication of a gradual change in anatomy as they adapted from in vitro to greenhouse environment. The best results were found when comparing epidermal, palisade and spongy mesophyll cells on the fourth fully expanded leaf under mist. Hydrangea quercifolia ‘Snow Queen’ was used to test the effects of tissue culture media and plant growth regulators. Research found that using dichloroisocyanuric acid (NaDCC) resulted in a decrease of contamination on explants without a reduction in the number of shoots produced. This would reduce the amount of time and labor on the encapsulation procedure, as no rinsing is required. The best result, looking a nutrient formulation, was found to be WPM with 1 µM BA added.
29

Simvastatin Encapsulation in Alginate-Based Microspheres

Parsian, Ava January 2016 (has links)
Despite the great success of hip implant surgeries, wear particle-induced implant aseptic loosening still limits the implant longevity. Simvastatin, an FDA-approved cholesterol lowering statin, is a promising drug candidate for the treatment of implant aseptic loosening due to its anti-inflammatory properties as well as its ability to stimulate bone growth and inhibit bone resorption. In addition, alginate microspheres have been used extensively in drug delivery applications because of alginate properties, including biocompatibility and gelation in mild conditions. However, the hydrophobicity of simvastatin, as well as the large alginate microsphere pore size leading to the leakage of low molecular weight drugs are limiting factors for their use as a delivery system for simvastatin. Therefore, the objectives of this thesis were twofold: 1. To complex simvastatin with 2-hydroxypropyl-β-cyclodextrin (HP-βCD) in order to increase its solubility; and 2. To increase simvastatin encapsulation efficiency in alginate microspheres by coating the microspheres with chitosan, adding dextran sulfate in the alginate solution, and optimizing the gelation conditions used for the synthesis of the microspheres (e.g., volume of gelation medium, curing time, and addition of simvastatin in the gelation medium). Results showed that simvastatin complexation with HP-βCD increased with HP-βCD to simvastatin molar ratio, to a maximum of 97.6% at the molar ratio of 10. Results also showed that chitosan coating of the alginate microspheres increased simvastatin encapsulation efficiency (up to 10.6%), which was further improved (up to 14.0%) when adding 2.0% (w/v) dextran sulfate to the alginate solution. This increase was likely due to electrostatic interactions between dextran sulfate and chitosan in addition to alginate, resulting in a denser coating. Finally, the addition of simvastatin in the gelation medium was shown to also increase simvastatin encapsulation (up to 22.4%), likely because of a decrease in the diffusion of simvastatin out of the microspheres. Overall, this work completed the initial steps for the development of an alginate-based drug delivery system for simvastatin with the long-term goal of providing a local delivery of simvastatin to modulate implant aseptic loosening.
30

Adhezní vlastnosti semi-IPN hydrogelů / Adhesion Properties of Semi-IPN Hydrogels

Candráková, Simona January 2020 (has links)
This Diploma thesis deals with optimization of the hydrogel preparation with various additions of substances affecting adhesion, studying the adhesion of prepared hydrogel systems and modifying their adhesion properties. Prepared hydrogels were agarose, alginate and gellan polymer systems with additions of acrylic acid, acrylamide, calcium chloride and Tween 20. The experimental part of the diploma thesis focuses first on optimizing the preparation of individual hydrogels, from which, according to certain criteria, suitable representatives were selected to study adhesion and its controlled modification. Agarose and gellan hydrogels were selected as suitable representatives, which were then used in rheological measurements. Based on these measurements, the effect of the adhesive force and the adhesive work of individual materials was evaluated. It was found that the best adhesion properties of the materials used are unadjusted hydrogels, in the case of hydrogels with the addition of another substance, a negative effect on adhesion was observed, when the adhesion force was reduced and also the adhesion work was reduced.

Page generated in 0.6153 seconds