Spelling suggestions: "subject:"algorithm"" "subject:"algorithm's""
1 |
Algorithme génétique spécifique à l'analyse de la susceptibilité à l'hypertension de la population du Saguenay-Lac-Saint-JeanLemieux Perreault, Louis-Philippe January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
2 |
Algorithme génétique spécifique à l'analyse de la susceptibilité à l'hypertension de la population du Saguenay-Lac-Saint-JeanLemieux Perreault, Louis-Philippe January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
3 |
Primality TestingSiracusa, Mia 01 January 2017 (has links)
In this thesis, I review the problem of primality testing. More specifically, I review the AKS algorithm and the theorems and problems leading up to the proof of this algorithm.
|
4 |
[en] REAL-TIME SIGNAL PROCESSOR / [pt] PROCESSADOR DE SINAIS EM TEMPO REALNELSON LUIZ RIET CORREA 15 January 2008 (has links)
[pt] Este trabalho descreve um processador de sinais em tempo real e o algoritmo de Bruun para o processamento da transformada rápida de Fourier. O hardware utiliza bancos de memória comutáveis entre si e processador do tipo bit-slide para atender ao requisito de tempo real. Embora projetado especificamente para executar o algoritmo de Bruun, permite qualquer tipo de processamento de sinais, sendo necessário apenas o desenvolvimento de software. / [en] This work describes a real time signal processor and Bruun s algorithm for the Fast Fourier Transform. Hardware employs switching banks of memories and a bit-slice processor to achieve real time processing. The sistem was designed specifically for the Bruun s algorithm, but it allows any type of signal processing, only software development being required.
|
5 |
Monte Carlo Simulations for Chemical SystemsRönnby, Karl January 2016 (has links)
This thesis investigates dierent types of Monte Carlo estimators for use in computationof chemical system, mainly to be used in calculating surface growthand evolution of SiC. Monte Carlo methods are a class of algorithms using randomsampling to numerical solve problems and are used in many cases. Threedierent types of Monte Carlo methods are studied, a simple Monte Carlo estimatorand two types of Markov chain Monte Carlo Metropolis algorithm MonteCarlo and kinetic Monte Carlo. The mathematical background is given for allmethods and they are tested both on smaller system, with known results tocheck their mathematical and chemical soundness and on larger surface systemas an example on how they could be used
|
6 |
Modeling, Scheduling and Optimization of Wireless Sensor Networks lifetime / Modélisation, ordonnancement et optimisation de la durée de vie des réseaux de capteurs sans filAhmed, Yousif Elhadi Elsideeg 06 December 2016 (has links)
Les réseaux de capteurs sans fil (RCSFs), sont composés d'un ensemble de nœuds avec des capteurs, transmetteur/récepteur, d'un système de traitement et d'une réserve d'énergie. Au regard d'applications, de travaux de recherche sont développés sur l'utilisation de ce réseau leur performance, fiabilité ou durée de vie. La durée de vie RCSFs correspond à la période à travers laquelle le RCSF fonctionne parfaitement. Cette durée de vie est très affectée par de nombreux facteurs comme la quantité d'énergie disponible, la probabilité de défaillance et les dégradations des composants. L'énergie disponible devient le facteur prépondérant dans les cas d'applications avec des composants difficilement rechargeables ou non renouvelables. Différents algorithmes, stratégies et techniques d'optimisation ont été élaborées et mises en œuvre à cet effet sur la possibilité d'activer un sous-ensemble de capteurs qui satisfont à la contrainte de surveillance et de garder les autres capteurs en mode veille pour pouvoir être mis en œuvre ultérieurement. Ainsi, c'est un problème de type NP complet de maximisation qui peut être résolu en considérant des Ensembles Disjoints de capteurs de Couverture (EDC). Mais la solution obtenue à l'aide des EDCs ne conduit pas toujours à une extension significative de la durée de vie des RCSFs. Le présent travail vise à rechercher une meilleure solution basée sur des capteurs regroupés dans des ensembles nondisjoints de couverture (ECND). Cette approche permet à un capteur de participer à une ou plusieurs ensembles de capteurs de couvertures. Nous avons alors étudié un modèle de représentation binaire des ECNDs pour déterminer un ordonnancement optimum permettant de maximiser la vie d'un RCSF. De plus, nous avons développé une heuristique basée sur un algorithme génétique, pour trouver une solution proche de l'optimal dans un délai raisonnable. Ainsi, pour un ensemble de m capteurs utilisés pour surveiller un ensemble de n cibles, cette heuristique permet construire un nombre maximum q d'ensembles ECNDs. Des efforts supplémentaires sont donc nécessaires pour trouver le meilleur ordonnancement pour la mise en œuvre des ECNDs, qui maximise la durée de vie globale du RCSF, compte tenu de l'énergie initialement disponible dans chaque capteur. Ce problème est formulé à l'aide d'un modèle mathématique de programmation linéaire en nombres entiers (PLE). La fonction objective de ce problème est la somme de toutes les périodes de surveillance pour les q ECNDs programmés, et la contrainte est la consommation d'énergie de tous les capteurs constituant les ECNDs. La possibilité de trouver la solution à ce problème par PLE dans une période de temps donnée dépend de la complexité du modèle et des instances utilisées. Pour trouver la solution dans un délai raisonnable, nous avons développé un algorithme génétique (AG) basé sur les ECNDs. Les solutions potentielles sont représentées dans des chromosomes composés d'un certain nombre de gènes correspondant aux ECNDs, et chaque gène est caractérisé par la période de surveillance d'un ECND. Nous avons ensuite développé un AG qui combine quatre opérateurs de croisement et quatre opérateurs de mutation. La méthode basée cet AG a été codée dans le langage de programmation C pour obtenir une solution satisfaisante et le logiciel Cplex a été utilisé de déterminer la solution exacte correspondant. Une comparaison des solutions obtenues sur de petites instances en utilisant la PLE par rapport aux solutions obtenues par notre AG montre que la méthode basée sur les AG peut trouver une solution proche de l'optimale dans un délai raisonnable. Ensuite, en comparant les solutions en utilisant l'AG ECNDs à l'AG EDCs de la littérature, nous montrons que l'AG avec ECND peut prolonger la durée de vie des RCSFs plus que les AG avec EDCs pour les mêmes instances. Notre approche combine ainsi les principes d'ordonnancement et les techniques d'optimisation pour maximiser la durée de vie des RCSFs / Wireless sensor networks (WSNs), as a collection of sensing nodes with limited processing, limited energy reserve and radio communication capabilities, are widely implemented in many areas of applications such as industry, environment, healthcare, etc. Regarding this large range of applications, many research issues are introduced including the applications, performance, reliability, lifetime, etc. The WSNs lifetime considered in this work is the period of time through which theWSN is perfectly completing its function. This lifetime is affected by many factors including the amount of energy available, failure probability and components degradation. The amount of energy available become the most important factor in case of non renewable components applications. Different algorithms, strategies and optimization techniques were developed and implemented for this purpose based on the possibility of activating a subset of sensors that satisfied the monitoring constraint, while keeping the others in sleep mode to be implemented later. This is an NP complete maximization problem that can be solved using disjoint set covers (DSCs). But the solution obtained using DSCs does not extend always significantly the WSNs lifetime. So, the present work aims to search for a better solution using non-disjoint set covers (NDSCs). This approach gives the opportunity for a sensor to be implemented in one or more subset covers. For that purpose, we studied a binary representation based model to maximize the number of NDSCs. Also, we developed a genetic algorithm based heuristic based on this model to find out the maximum number of NDSCs in a reasonable time. Thus, for a set of m sensors used to monitor a set of n targets or a field, this heuristic allows to construct a maximum number q of NDSCs. Additional effort is required to find the best scheduling for implementing the NDSCs so as to maximize the lifetime of the sensors involved in the WSNs, considering their limited available energy. This problem is formulated using integer linear programming (ILP) mathematical model. The objective function of this problem is the sum of all monitoring seasons on which all q NDSCs scheduled, and the constraint is the energy consumption in all sensors included in all NDSCs. Solving this problem using ILP in a period of time depends on the complexity of the model and the instances used. To find the solution in reasonable time, we have developed a NDSCs based genetic algorithm (NDSC-GA). The candidate solutions are represented in chromosomes composed of a number of genes equal to the number q of NDSCs, and each gene is the number of monitoring seasons on which a NDSC is scheduled. We have then developed a GA that combines the four crossover operators and four mutation operators. The GA based methods are coded in C programming language to obtain a satisfying solution and the Cplex software was used to obtain the corresponding exact solution. Comparing the optimal solution obtained using the ILP on small instances, to the solutions obtained using our GA based method explained that our methods can find a solution near the optimal in reasonable time. Then, comparing the solution obtained using our NDSCs GA based methods, to the DSCs GA based method in the literature, we showed that the NDSCs GA can prolong the WSNs lifetime better than DSCs GA for the same instances. Our approach combines together the scheduling principles and the optimization techniques to maximizing the WSNs lifetime
|
7 |
Biopsy needles localization and tracking methods in 3d medical ultrasound with ROI-RANSAC-KALMAN / Méthodes de localisation et de suivi d’aiguille de biopsie en échographie 3D avec ROI-RANSAC-KalmanZhao, Yue 05 February 2014 (has links)
Dans les examens médicaux et les actes de thérapie, les techniques minimalement invasives sont de plus en plus utilisées. Des instruments comme des aiguilles de biopsie, ou des électrodes sont utilisés pour extraire des échantillons de cellules ou pour effectuer des traitements. Afin de réduire les traumatismes et de faciliter le suivi visuelle de ces interventions, des systèmes d’assistance par imagerie médicale, comme par exemple, par l’échographie 2D, sont utilisés dans la procédure chirurgicale. Nous proposons d’utiliser l’échographie 3D pour faciliter la visualisation de l’aiguille, mais en raison de l’aspect bruité de l’image ultrasonore (US) et la grande quantité de données d’un volume 3D, il est difficile de trouver l’aiguille de biopsie avec précision et de suivre sa position en temps réel. Afin de résoudre les deux principaux problèmes ci-dessus, nous avons proposé une méthode basée sur un algorithme RANSAC et un filtre de Kalman. De même l’étude est limitée à une région d’intérêt (ROI) pour obtenir une localisation robuste et le suivi de la position de l’aiguille de biopsie en temps réel. La méthode ROI-RK se compose de deux étapes: l’étape d’initialisation et l’étape de suivi. Dans la première étape, une stratégie d’initialisation d’une ROI en utilisant le filtrage de ligne à base de matrice de Hesse est mise en œuvre. Cette étape permet de réduire efficacement le bruit de granularité du volume US, et de renforcer les structures linéaires telles que des aiguilles de biopsie. Dans la deuxième étape, après l’initialisation de la ROI, un cycle de suivi commence. L’algorithme RK localise et suit l’aiguille de biopsie dans une situation dynamique. L’algorithme RANSAC est utilisé pour estimer la position des micro-outils et le filtrage de Kalman permet de mettre à jour la région d’intérêt et de corriger la localisation de l’aiguille. Une stratégie d’estimation de mouvement est également appliquée pour estimer la vitesse d’insertion de l’aiguille de biopsie. Des volumes 3D US avec un fond inhomogène ont été simulés pour vérifier les performances de la méthode ROI-RK. La méthode a été testée dans des conditions variables, telles que l’orientation d’insertion de l’aiguille par rapport à l’axe de la sonde et le niveau de contraste (CR). La précision de la localisation est de moins de 1 mm, quelle que soit la direction d’insertion de l’aiguille. Ce n’est que lorsque le CR est très faible que la méthode proposée peut échouer dans le suivi d’une structure incomplète de l’aiguille. Une autre méthode, utilisant l’algorithme RANSAC avec apprentissage automatique a été proposée. Cette méthode vise à classer les voxels en se basant non seulement sur l’intensité, mais aussi sur les caractéristiques de la structure de l’aiguille de biopsie. Les résultats des simulations montrent que l’algorithme RANSAC avec apprentissage automatique peut séparer les voxels de l’aiguille et les voxels de tissu de fond avec un CR faible. / In medical examinations and surgeries, minimally invasive technologies are getting used more and more often. Some specially designed surgical instruments, like biopsy needles, or electrodes are operated by radiologists or robotic systems and inserted in human’s body for extracting cell samples or delivering radiation therapy. To reduce the risk of tissue injury and facilitate the visual tracking, some medical vision assistance systems, as for example, ultrasound (US) systems can be used during the surgical procedure. We have proposed to use the 3D US to facilitate the visualization of the biopsy needle, however, due to the strong speckle noise of US images and the large calculation load involved as soon as 3D data are involved, it is a challenge to locate the biopsy needle accurately and to track its position in real time in 3D US. In order to solve the two main problems above, we propose a method based on the RANSAC algorithm and Kalman filter. In this method, a region of interest (ROI) has been limited to robustly localize and track the position of the biopsy needle in real time. The ROI-RK method consists of two steps: the initialization step and the tracking step. In the first step, a ROI initialization strategy using Hessian based line filter measurement is implemented. This step can efficiently reduce the speckle noise of the ultrasound volume, and enhance line-like structures as biopsy needles. In the second step, after the ROI is initialized, a tracking loop begins. The RK algorithm can robustly localize and track the biopsy needles in a dynamic situation. The RANSAC algorithm is used to estimate the position of the micro-tools and the Kalman filter helps to update the ROI and auto-correct the needle localization result. Because the ROI-RK method is involved in a dynamic situation, a motion estimation strategy is also implemented to estimate the insertion speed of the biopsy needle. 3D US volumes with inhomogeneous background have been simulated to evaluate the performance of the ROI-RK method. The method has been tested under different conditions, such as insertion orientations angles, and contrast ratio (CR). The localization accuracy is within 1 mm no matter what the insertion direction is. Only when the CR is very low, the proposed method could fail to track because of an incomplete ultrasound imaging of the needle. Another methodology, i.e. RANSAC with machine learning (ML) algorithm has been presented. This method aims at classifying the voxels not only depending on their intensities, but also using some structure features of the biopsy needle. The simulation results show that the RANSAC with ML algorithm can separate the needle voxels and background tissue voxels with low CR.
|
Page generated in 0.0449 seconds