1 |
Ammonia Removal and Recovery from Wastewater Using Natural Zeolite: An Integrated System for Regeneration by Air Stripping Followed Ion ExchangeDeng, Qiaosi 20 January 2014 (has links)
This study revealed that ammonium ion exchange of natural zeolite could be a feasible method of nitrogen removal and recovery from permeate from anaerobic membrane bioreactors (AnMBRs). NaCl concentrations optimized for chemical regeneration in batch experiments did not match those in continuous column tests. Instead, the mass ratio of Na+ to Zeolite-NH4+-N was significant for improving regeneration efficiency in column experiments; this mass ratio was 750 g Na+/g Zeolite-NH4+-N required for regeneration efficiency over 90% in 2 hours at pH 9. ???To decrease the NaCl dose in regeneration of exhausted zeolite, a high pH regeneration method was developed using an NaCl concentration of 10 g/L at pH 12 (the mass of Na+ to Zeolite-NH4+-N of 4.2 ) which achieved a regeneration efficiency about 85%.
The recovery of ammonium nitrogen from the exhausted zeolite was assessed with air stripping followed by ammonia collection in an acid scrubber. The effects of shaking and air stripping were investigated in batch tests and the results showed the superiority of air stripping over shaking. Liquid circulation and air flow rates were varied for optimization of ammonia recovery in a continuous zeolite-packed column combined with a regeneration chamber and a stripping column. The liquid circulation rate had no significant effect on either the regeneration efficiency or the ammonia transfer efficiency from ammonium nitrogen to ammonia gas, while the ammonia transfer efficiency significantly increased with the air flow rate.??? Furthermore, the effect of pH on ammonia recovery was tested. Both the regeneration efficiency and the ammonia transfer efficiency were significantly improved with increasing pH. When the pH was increased from 9.5 to 12, the regeneration efficiency increased from 9.2% to 84% and the ammonia transfer efficiency increased from 54% to 92%. The nitrogen recovery process that combines zeolite ammonium exchange and air stripping can decrease chemical costs for regeneration of exhausted zeolite and efficiently collect ammonium nitrogen to be reused as fertilizers. Hence, the integrated nitrogen process can resolve the challenge of nitrogen removal in anaerobic membrane bioreactors treating organic wastewater in sustainable manners.
|
2 |
Chromate Reduction and Immobilization Under High PH and High Ionic Strength ConditionsHe, Yongtian 19 March 2003 (has links)
No description available.
|
3 |
Pâtes lignocellulosiques : étude d'un nouveau stade de blanchiment ECF à faible impact environnemental / Lignocellulosic pulps : study of a new ECF bleaching stage with low environmental impactMarcon, Jennifer 15 December 2016 (has links)
Le dioxyde de chlore est l’agent de blanchiment le plus utilisé pour le blanchiment des pâtes chimiques lignocellulosiques. Son utilisation s’accompagne malheureusement de la formation d’ions chlorates, composés inefficaces pour le blanchiment, ainsi que d’importants rejets de DCO et d’organo-chlorés (AOX), nuisibles pour l’environnement. Cette étude a consisté à concevoir un nouveau stade de blanchiment au dioxyde de chlore (stade D) à pH non-conventionnel, économe en réactifs, et visant à réduire l’impact environnemental d’une séquence classique. Le travail a été effectué sur des pâtes kraft de résineux, obtenues après cuisson ou à différents stades de la séquence de blanchiment. Les résultats ont montré que l’efficacité du nouveau stade D était meilleure lorsqu’il était placé en fin de séquence. Après optimisation et incorporation de peroxyde d’hydrogène comme réactif complémentaire, les pâtes obtenues présentent des caractéristiques équivalentes à celles d’un blanchiment conventionnel, en termes de blancheur et de degré de polymérisation moyen viscosimétrique ; et ce, avec une réduction drastique de la pollution (70% des AOX et 20 % de DCO), et un gain économique substantiel en productivité de séquence (diminution de la température et du temps de réaction). L’étude chimique de la réaction du dioxyde de chlore effectuée par différentes techniques (spectroscopie RPE, RMN, FTIR, chromatographie HPAEC-PAD), a révélé la présence de radicaux hydroxyles en milieu alcalin, et mis en évidence les principales étapes du mécanisme à différents pH. / Chlorine dioxide is the most widely used bleaching agent for the production of bleached chemical pulps. However, its main drawbacks are the formation of chlorate ions which decrease delignification efficiency and the reject of toxic chloro-organic molecules (AOX) in mill effluents. This study focused on the development of a new bleaching stage using chlorine dioxide (D stage) at non-conventional pH, to reduce environmental impact and production costs. The work was carried out on several softwood kraft pulps after cooking, and at different stages of the bleaching sequence. The best results of the novel D stage were obtained for pulps at low kappa number, i.e. at the end of the bleaching sequence. The D stage was optimized and coupled with hydrogen peroxide addition. The same brightness and viscosimetric average degree of polymerization as after conventional D bleaching were obtained. Interestingly, a very important decrease of pollution load (70% of AOX and 20% of COD) was obtained, accompanied by a significant gain of productivity and energy saving (lower temperature and reaction time).Chemical investigations on the reaction mechanisms, carried out by different techniques (ESR, NMR and FTIR spectroscopies, HPAEC-PAD chromatography), revealed the formation of hydroxyl radicals at alkaline pH. The structural modification of the pulp residual lignin was also studied; differences of the reaction mechanism as function of pH were highlighted.
|
4 |
The role of the LAMMER kinase Kns1 and the calcium/calmodulin-dependent kinase Cmk2 in the adaptation of Saccharomyces cerevisiae to alkaline pH stressMarshall, Maria Nieves Martinez 01 February 2013 (has links)
Die LAMMER-Kinasen sind Dual-Spezifität-Proteinkinasen, die durch das namensgebende einzigartige LAMMER-Motiv gekennzeichnet sind. Sie sind evolutionär hoch konserviert und in den meisten Eukaryonten vorhanden. Die vorliegende Arbeit stellt die erste funktionelle Charakterisierung eines bisher kaum erforschten Vertreters der LAMMER-Proteinkinase Familie Kns1 aus der Bäckerhefe dar. Phänotypische Analysen belegten eine entscheidende Rolle für Kns1 in der Regulation der Toleranz gegenüber basischem pH-Stress. Das Entfernen des KNS1 Gens führte zu einer gesteigerten Empfindlichkeit der Zellen gegenüber basischen Wachstumsbedingungen. Weitere Analysen zeigten, dass Kns1 neben der katalytischen Aktivität auch nicht-katalytischen Mechanismen zur Förderung des Zellwachstums unter alkalischem pH-Stress nutzt. Die Reinigung des Kns1 Proteins in voller Länge aus E. coli ermöglichte die Identifizierung von neun in vitro-Autophosphorylierungsstellen mittels Massenspektrometrie. Die Mutation von Thr562, eine Autophosphorylierungsstelle innerhalb des LAMMER-Motivs, zu Alanin ergab in vitro eine Kinase mit intrinsischer katalytischer Aktivität, die sich jedoch in vivo hauptsächlich wie die katalytisch inaktive Kns1-Mutante verhielt. Die Calcium/Calmodulin-abhängige Proteinkinase II Cmk2, die konstitutiv autokatalytische Eigenschaften besitzt, wurde früher als mögliches in vitro Substrat von Kns1 vorgeschlagen. In dieser Arbeit beweise ich durch Verwendung einer katalytisch inaktiven Cmk2-Mutante als Substrat, dass Kns1 Cmk2 in vitro phosphoryliert. Darüber hinaus zeige ich, dass Cmk2 die basische pH-Toleranz der Zellen beschränkt. Gestützt durch genetische Hinweise agieren beide Proteine gemeinsam bei der Regulation der alkalischen Stresstoleranz, wobei Kns1 möglicherweise Cmk2 herabreguliert. Zusammenfassend beschreibt diese Arbeit eine neue und entscheidende Rolle von Kns1 und Cmk2 bei der Anpassung der Hefe an alkalisches Milieu. / The LAMMER protein kinases, termed after a unique signature motif found in their catalytic domains, are an evolutionary conserved family of dual-specificity kinases that are present in most eukaryotes. Here I report the first functional characterization of one of the most unexplored members of the LAMMER family, the budding yeast Kns1. Phenotypic analysis uncovered a crucial role for Kns1 in the control of the yeast tolerance to high pH stress. Deletion of the KNS1 gene conferred high sensitivity to alkaline pH, whereas its overexpression increased tolerance to this stress. Further analysis established that Kns1 promotes growth under alkaline pH stress using not only its catalytic activity but also non-catalytic mechanisms. Large-scale purification of full-length Kns1 from E. coli allowed for the identification of nine in vitro autophosphorylation sites on Kns1 by mass spectrometry. Mutation of the threonine residue at position 562, an autophosphorylation site located within the LAMMER motif, to a non-phosphorylatable residue yielded a kinase that preserves intrinsic catalytic activity in vitro but mostly behaves like the catalytically inactive mutant in vivo. This finding showed the physiological importance of autophosphorylation site Thr562 in the regulation of Kns1 function. The protein Cmk2, a calcium/calmodulin-dependent protein kinase II with autocatalytic properties, has been previously proposed as a possible in vitro substrate for Kns1. Here I demonstrate that Kns1 phosphorylates Cmk2 in vitro using a catalytically inactive Cmk2 mutant as substrate and show that Cmk2 restricts alkaline tolerance. Genetic evidence suggested that both proteins act in concert on a common pathway, in which Kns1 may downregulate Cmk2 to confer alkaline tolerance. In conclusion, this thesis describes a novel and crucial role for Kns1 and its in vitro substrate Cmk2 in the adaptation of yeast to alkaline stress.
|
Page generated in 0.0716 seconds