• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 249
  • 220
  • 39
  • 30
  • 30
  • 16
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • Tagged with
  • 691
  • 153
  • 113
  • 79
  • 71
  • 57
  • 54
  • 47
  • 44
  • 42
  • 38
  • 37
  • 37
  • 36
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

A new synthetic strategy for low-dimensional compounds : Lone pair cations and alkaline earth spacers

Fredrickson, Rie Takagi January 2008 (has links)
<p>Complex transition metals oxyhalides containing a lone pair element, such as tellurium (IV), form an attractive research field because there is a high probability of finding new low-dimensionally arranged compounds and, particularly, a low-dimensionally arranged transition metals substructures, leading to interesting physical properties. Tellurium (IV) can drive the formation of many unusual structures because of its stereochemically active lone pair electrons, E. It commonly takes a coordination of three or four oxygen atoms to form either a TeO3E square pyramid or a TeO3+1E trigonal bipyramid. These lone pairs are very important players involved in lowering the dimensionality of crystal structures. Previous studies in transition metal tellurium (IV) oxohalide quarternary systems revealed a family of compounds, many of which exhibit interesting properties e.g. magnetic frustration. The unique point of this thesis is to employ alkaline earth elements (AE) to augment this ability of lone pair elements to lower the dimensionality of the transition metal arrangements. By this double usage of “chemical scissors” (a lone pair element used in conjunction with alkaline earth elements) we obtained new types of low-dimensionally arranged compounds.</p><p>This thesis is focused on the syntheses and characterization of a series of compounds in the pentanary (five components) system AE-TeIV-TM-O-X (AE=alkaline earth metal, TM=transition metal and X=halogen), in which nine new compounds were found. The crystal structures of each of these compounds were determined by the single crystal X-ray diffraction data.</p>
222

A new synthetic strategy for low-dimensional compounds : Lone pair cations and alkaline earth spacers

Fredrickson, Rie Takagi January 2008 (has links)
Complex transition metals oxyhalides containing a lone pair element, such as tellurium (IV), form an attractive research field because there is a high probability of finding new low-dimensionally arranged compounds and, particularly, a low-dimensionally arranged transition metals substructures, leading to interesting physical properties. Tellurium (IV) can drive the formation of many unusual structures because of its stereochemically active lone pair electrons, E. It commonly takes a coordination of three or four oxygen atoms to form either a TeO3E square pyramid or a TeO3+1E trigonal bipyramid. These lone pairs are very important players involved in lowering the dimensionality of crystal structures. Previous studies in transition metal tellurium (IV) oxohalide quarternary systems revealed a family of compounds, many of which exhibit interesting properties e.g. magnetic frustration. The unique point of this thesis is to employ alkaline earth elements (AE) to augment this ability of lone pair elements to lower the dimensionality of the transition metal arrangements. By this double usage of “chemical scissors” (a lone pair element used in conjunction with alkaline earth elements) we obtained new types of low-dimensionally arranged compounds. This thesis is focused on the syntheses and characterization of a series of compounds in the pentanary (five components) system AE-TeIV-TM-O-X (AE=alkaline earth metal, TM=transition metal and X=halogen), in which nine new compounds were found. The crystal structures of each of these compounds were determined by the single crystal X-ray diffraction data.
223

On-site wastewater treatment : Polonite and other filter materials for removal of metals, nitrogen and phosphorus

Renman, Agnieszka January 2008 (has links)
Bed filters using reactive materials are an emerging technology for on-site wastewater treatment. Chemical reactions transfer contaminants from the aqueous to the solid phase. Phosphorus is removed from domestic wastewater by sorption to filter materials, which can then be recycled to agriculture as fertilisers and soil amendments. This thesis presents long-term column and field-scale studies of nine filter materials, particularly the novel product Polonite®. Phosphorus, nitro-gen and metals were removed by the mineral-based materials to varying degrees. Polonite and Nordkalk Filtra P demonstrated the largest phosphorus removal capacity, maintaining a PO4-P removal efficiency of &gt;95%. Analysis of filter bed layers in columns with downward wastewater flow, showed that phosphorus, carbon and nitrogen content was vertically distributed, with de-creasing values from surface to base layer. Polonite and Filtra P accumulated 1.9-19 g P kg-1. Nitrogen in wastewater was scarcely removed by the alkaline filter materials, but transformation from NH4-N to NO3-N was &gt;90%. Pot experiments with barley (Hordeum vulgare L.) revealed that after wastewater treatment, slags and Polonite could increase plant production. Batch experi-ments and ATR-FTIR investigations indicated that amorphous tricalcium phosphate (ATCP) was formed in the materials, so some of the accumulated PO4-P was readily available to plants. Low heavy metal contents occurred in the materials, showing that they can be applied as soil amend-ments in agriculture without contamination risks. A full-scale treatment system using Polonite as filter material showed an average PO4-P removal efficiency of 89% for a 92-week period, indicat-ing the robustness of the filter bed technology. / QC 20100907
224

Single and Multiple Heteroatom Incorporation in MFI Zeolites

Garcia Vargas, Nataly 14 March 2013 (has links)
Zeolites are crystalline inorganic solids that are industrially used for adsorption, ion exchange and catalysis. As catalysts, they have been particularly successful in the hydrocarbon processing industry due to their unique activities and selectivities. Zeolites are mainly used in acid catalyzed reactions, but their catalytic functionality can be diversified through the incorporation of elements that are traditionally not part of their framework. The incorporation of various elements has been studied in recent decades resulting in zeolites with potential to perform different chemistries or improve catalytic performance in existing ones. However, many of these investigations have been conducted under conditions that do not necessarily represent realistic scenarios for industrial implementation. The main objective of this dissertation was to study the single and simultaneous framework incorporation of tin, boron, germanium and aluminum in MFI zeolites under synthesis conditions that are more in line with industrial preparations. These include the use of mixtures in alkaline media with high concentration of precursor species. The interest on tin resides on its potential for Lewis acid catalysis, while boron and germanium have potential for modulating acid strength and enhancing catalytic properties respectively. Three specific systems were studied: MFI zeolites with simultaneous incorporation of germanium and aluminum (i.e. Ge-Al-MFI zeolites), MFI zeolites with simultaneous incorporation of germanium and boron (i.e. B-Ge-MFI zeolites), and MFI zeolites with single incorporation of tin (i.e. Sn-MFI zeolites). Systematic synthesis experiments were coupled with extensive analytical characterization in order to assess how element incorporation and zeolite physicochemical properties are affected by synthesis conditions. In addition, the catalytic activity of Sn-MFI zeolites for the hydroxylation of phenol was studied. The general conclusion from this work is that framework incorporation of these elements is highly influenced by pH, mixture composition and the presence of sodium cations. Sodium cations are commonly included in industrial preparations through the use of sodium hydroxide, but they were found to negatively affect framework incorporation due to a tendency to form stable extra-framework impurities with the heteroatoms, especially germanium and tin. pH and mixture composition are particularly influential in controlling germanium and boron incorporation, while the incorporation of tin, its coordination environment and catalytic performance were found to depend on synthesis conditions as well as post-synthesis treatments.
225

Lake Cycles and Sediments: Locality 80, Olduvai Gorge, Tanzania

Berry, Patricia A 07 August 2012 (has links)
Studies have shown that Bed I and Lower Bed II (1.92Ma- 1.76Ma) of Paleolake Olduvai at Locality 80 are primarily composed of the authigenic lacustrine clay minerals illite, smectite, and interlayered illite-smectite. X-ray fluorescence analysis and the sedimentation rates of Hay and Kyser (2001) were used to identify four apparent lake cycles beginning and ending with saline alkaline phases. Peaks in Al2O3/MgO ratios, and TiO2 and P2O5 abundances occur at approximately the same elevations within the stratigraphic section. Low values in these three parameters indicate saline alkaline conditions whereas high values represent fresh water conditions. Lake Cycles (LC) 1 and 4 completed in approximately 44,000 years and 42,000 years respectively, which is similar to the 41k.y. year cycle associated with Earth’s obliquity. Lake Cycles 2 and 3 span approximately 24,000 years and are similar to the 21k.y. precession cycle.
226

Evaluation of emergent macrophytes as a source forbiogas production after mechanical, alkaline and fungalpretreatments.

Alvinge, Simon January 2010 (has links)
Two species of emergent macrophytes, Typha latifolia (common cattail) and Phalaris arundinacea (reed canary grass) were evaluated as substrates for biogas production. The specific methane yield for each plant was obtained by batch wise anaerobic digestion in 300-mL bottles. Three different pretreatments were evaluated for increased biogas production; mechanical milling, alkaline treatment with lime and fungal degradation with Pleurotus ostreatus (oyseter mushroom).The methane yield for Typha latifolia and Phalaris arundinacea was determined to 300 and 323mL methane per g VS, respectively. There was no statistical difference in methane yield between the two species. Milling pretreatment increased the biogas yield with 16 % by average compared to untreated plant. Alkaline pretreatment with lime increased the biogas yield with 27 % at roomtemp. and 22 % at 55 °C. The fungal pretreatment decreased the biogas production by 20 % and is probably not suitable for this kind of substrate.The results showed that emergent macrophytes have a biogas yield similar to other plants already tested (grasses) and commonly used (pasture crops) in large scale reactors. However, emergent macrophytes and grasses cause mechanical problems in a reactor due to their structure. Probably some kind of milling must be done to decrease the fiber length of the emergent macrophytes. The costs for harvest, transport, handling and possible pretreatment of the emergent macrophytes have to be estimated and included in the overall cost calculations. This can tell if emergent macrophytes should be used as a substrate for biogas production.
227

Alkaline pulping : deadload reduction studies in chemical recovery system

Chandra, Yusup 02 December 2004 (has links)
The kraft pulping process has been known for decades. The focus in kraft pulping has always been on better operation of the chemical recovery system. One of the targets is on deadload (sodium sulfate (Na2SO4) and sodium carbonate (Na2CO3)) reduction in white liquor. A model based on several literature references was developed to study the effect of deadload reduction. A base model was developed based on current mill operation. This base model was compared to the deadload reduction model. Overall improvement, such as operating cost saving and revenue generation was achieved from deadload reduction. Operating cost saving involves less deadload chemical in chemical recovery system, and less water that was associated with the deadload itself. Revenue generation involves generating more steam and heat from the recovery boiler that can be used for mill purposes or energy revenue. Two important variables to achieve deadload reduction are causticizing efficiency and reduction efficiency.
228

The colored materials of alkaline cooking liquors

Kimble, Glenn Curry 01 January 1941 (has links)
No description available.
229

The high temperature alkaline degradation of phenyl β-D-glucopyranoside

Molinarolo, William E. 01 January 1989 (has links)
No description available.
230

C2 alkoxyl anion participation in the base-catalyzed reaction of p-nitrophenyl beta-D-galctoside and p-nitrophenyl alpha-D-mannoside

Gasman, Robert C. 01 January 1966 (has links)
No description available.

Page generated in 0.061 seconds