1 |
Development of diffusion bonding techniques and testing of bonded joints in Al - Li 8090 alloyDunford, David V. January 1994 (has links)
No description available.
|
2 |
Properties and microstructure of Al-Li alloysXia, Xiaoxin January 1989 (has links)
No description available.
|
3 |
Hot formability and microstructural development of spray-deposited Al-Li alloy and compositeSparks, Christopher Nigel January 1994 (has links)
The deformational and microstructural behaviour of the commercial Al-Li alloy 8090 and an 8090 based composite containing silicon carbide particulate has been investigated. The materials were deformed at elevated temperature by the test methods of plane strain compression (PSC) and torsion to provide stress-strain data for the formulation of constitutive relationships. Torsion testing also provided high temperature ductility data. Isothermal annealing of rolled samples was carried out at the solution temperature of 530°C to investigate the recrystallisation kinetics and microstructures produced, with particular emphasis on the effect of the inclusion of reinforcement particles on the behaviour of the matrix alloy. Hyperbolic sine forms of constitutive equation have been produced and are found to provide good agreement with the experimental data. High values of the activation energy are calculated for the deformation of both the alloy and composite from the PSC test data. The equations obtained from the two different test methods are found to be comparable for the composite material, but a discrepancy is found for the monolithic alloy, where apparently less hardening results from torsion testing. A distinct transition in microstructure from recrystallised equiaxed grains when deformed at low temperature to an elongated, sometimes partially recrystallised, structure for material rolled at high temperature is present in the monolithic material. This is attributed to the balance of recrystallisation driving force and the Zener pinning force exerted by the 13' (A1 3Zr) phase. The composite material exhibited greatly enhanced recrystallisation kinetics in agreement with the theory of particle stimulated nucleation (PSN) of recrystallisation.
|
4 |
Propriétés mécaniques des alliages Al-3Li et Al-3Li2Fe solidifiés rapidement par pulvérisation centrifuge.Hinojosa-Torres, Jaime, January 1900 (has links)
Th. doct.-ing.--Sci. des matér.--Nancy--I.N.P.L., 1984.
|
5 |
Experimental and theoretical aspects of microstructural sensitive crack growth in Al-Li 8090 alloyXin, Xiaojiang January 1992 (has links)
No description available.
|
6 |
Comportement en fissuration par fatigue de l'alliage aéronautique 2099-T83 Al-LiTchitembo Goma, Franck Armel 20 April 2018 (has links)
En service, où les conditions climatiques varient, les aéronefs sont constamment sollicités par des chargements dynamiques qui sont susceptibles d’endommager la structure par la propagation de fissures de fatigue. Aussi, à l’heure où l’allégement des structures aéronautiques constitue un défi environnemental et économique majeur que les manufacturiers des aéronefs sont tenus de relever, l’utilisation d’un alliage léger et ayant des propriétés mécaniques attrayantes est envisagée pour répondre à cette problématique. Parmi ces alliages, l’alliage d’aluminium lithium 2099-T83 a été sélectionné pour être utilisé dans la dernière génération des aéronefs. L’objectif global de ce travail de thèse était d’étudier le comportement en fissuration par fatigue de l’alliage d’aluminium-lithium 2099-T83, en tenant compte de l’historique de la mise en forme du matériau qui est fonction du facteur de forme (AR : extrusion aspect ratio en anglais). Dans cette optique, deux profilés ont été investigués (un panneau à raidisseur intégral et un profilé cylindrique), desquels les paramètres métallurgiques (la microstructure : la structure des grains, les particules de seconde phase/précipités et la texture cristallographique) de l’alliage ont d’abord été analysés. Dans le panneau à raidisseur intégral, des essais de fissuration par fatigue ont été conduits dans différents environnements [23°C avec ~ 50% d’humidité relative (HR) et PH20 = 1.5 kPa ; 23°C avec ~0% HR et PH20 = 6.3 Pa puis -30°C avec ~18% HR et PH20 = 8.7 Pa]. Les résultats de cette étude montrent que les vitesses de fissuration par fatigue (da/dN) corrèlent avec le rapport de forme (AR) ; c'est-à-dire que les da/dN diminuent lorsque AR tend vers 1, et ce, indépendamment de la température des essais. Aussi, la résistance à la fissuration augmente à mesure que la température diminue. L’effet de la température sur les vitesses de propagation de fissures de fatigue (da/dN) a été attribué à celui de l’environnement via la variation de la pression de vapeur d’eau. Toutefois, en comparant les vitesses de fissuration générées à 23°C (0% HR et PH2O ~ 6.3 Pa) à celles obtenues à -30°C (18% HR et PH2O ~ 8.7 Pa), nous avons estimé qu’il reste probablement un effet résiduel de la température, puisque les da/dN dans le premier environnement sont légèrement supérieures à celles dans le dernier environnement. Nous avons aussi trouvé que l’effet de la température varie en fonction de AR. Plus AR est grand, moins les surfaces de rupture sont rugueuses et plus elles favorisent la migration de l’hydrogène contenue dans la vapeur d’eau en pointe de fissure. Dans le profilé cylindrique, seuls les essais à température ambiante (23°C et ~50% HR) ont été effectués suivant les orientations LR (longitudinale) et CR (transversale) des spécimens, et les résultats obtenus indiquent une anisotropie des vitesses de propagation de fissures. Celles-ci sont plus faibles dans le sens LR que dans le sens CR. De plus, la morphologie des surfaces de rupture varie également avec l’orientation du plan de fissuration. Le mécanisme de fissuration qui a lieu est celui associé au changement du mode de propagation de fissures qui passe du mode de propagation intergranulaire dans l'orientation CR au mode de propagation transgranulaire dans l'orientation LR. En définitive, le comportement en fissuration par fatigue de l’alliage étudié est contrôlé par la structure de grains et la texture cristallographique, deux principaux paramètres qui sont influencés par AR. / In service where climatic conditions vary, aircraft are constantly confronted to fluctuating loads that could damage the structure by fatigue crack growth (FCG). Also, as the weight savings of aircraft structures become a major environmental an economic challenge that aircraft manufacturers are required to meet, the use of light alloy combined with superior mechanical properties is required to meet this problematic. Among these alloys, the 2099-T83 aluminum lithium alloy was selected for use in the latest generation of aircrafts. The overall objective of this thesis was to study the fatigue crack growth (FCG) behavior of aluminum- lithium 2099 - T83, taking into account the material processing history that depends on the extrusion aspect ratio (AR). In this regard, two profiles were investigated (an integrally stiffened panel and a cylindrical profile) from which metallurgical parameters (microstructure: the grain structure, the second phase particles/precipitates and crystallographic texture) of the alloy were first analyzed. In the integrally stiffened panel, fatigue crack growth tests were conducted in different environments [23°C with ~ 50% relative humidity (RH) and PH20 = 1.5 kPa; 23°C with ~ 0% RH and PH20 = 6.3 Pa and then -30°C ~ 18% RH and PH20 = 8.7 Pa]. The results of this study show that FCG rates (da/dN) correlate with the local extrusion aspect ratio (AR), as a result of the combined effects of both the grain structure and the crystallographic texture, regardless of the test temperature. The resistance to FCG increased with decreasing temperature, this effect being attributed to a decrease in humidity content in the studied temperature range. However, comparing the FCG rates generated at 23°C (0% RH and PH2O ~ 6.3 Pa) to those obtained at -30°C (18% RH and PH2O ~ 8.7 Pa), we believe that a residual effect of the temperature is still present, since the da /dN in the first environment are slightly higher than those in the latter environment. We also found that the effect of the temperature varies as a function of AR. The higher is AR, the less the fracture surfaces are rough and the easier they promote the migration of hydrogen contained in water vapor at the crack tip. In the cylindrical profile, only the tests at room temperature (~ 23°C and 50% RH) were performed in the LR (longitudinal) and CR (transverse) oriented specimens, and the results indicate an anisotropy of the FCG rates. These are lower in the LR direction in than in the CR direction. Furthermore, the morphology of the fracture surfaces also varies with the orientation of the plane of cracking. The fatigue crack growth mechanism that takes place is that associated with the change in crack propagation mode. Fatigue cracking mode was found to be intergranular in the CR orientation while the transgranular mode was observed in the LR orientation. Finaly, the fatigue cracking behavior of the studied alloy is controlled by the grain structure and crystallographic texture, two main parameters that are influenced by AR.
|
7 |
Soudage d'alliages d'aluminium par la technologie Friction Stir Welding Bobbin Tool / Friction Stir Welding with Bobbin Tool of aluminium alloysGuerin, Baptiste jean patrice 04 March 2010 (has links)
Dans le domaine des matériaux métalliques, les techniques d’assemblage par soudageconduisent à des réductions de masse et de coûts importantes susceptibles d’intéresserles industries aéronautiques. Néanmoins, les procédés de soudage classiquespar fusion ne s’appliquent pas aux dernières générations d’alliages d’aluminium aéronautiques.Dans ce contexte, le procédé de soudage Friction Stir Welding présentedes atouts considérables, de nature à rendre compétitives les structures métalliquesface à la montée en puissance des matériaux composites.L’objectif de cette thèse est double. Il s’agit d’une part d’améliorer notre compréhensiondu procédé de soudage Friction Stir Welding Bobbin Tool puis dans undeuxième temps de proposer une méthodologie visant à prédire les paramètres desoudage optimaux.Afin de mener à bien ces objectifs, des essais de soudage ont été menés pour troisalliages d’aluminium aéronautique, incluant deux alliages d’aluminium-lihtium, etdeux épaisseurs, représentatives d’une jonction de peau de fuselage. Les résultatsd’essais ont par la suite été exploités et ont permis de mettre en évidence des corrélationsentre paramètres de soudage, température, puissance et malaxage du noyausoudé.Dans un troisième temps, afin de supporter la démarche expérimentale, des outilsde simulation ont été utilisés. Un modèle thermo-fluide local a été développé afinde simuler les phénomènes de malaxage dans le noyau soudé. A l’échelle globale, unmodèle thermique a permis de reproduire fidèlement les phénomènes de diffusion dela chaleur dans la structure. Enfin, le couplage des deux modèles a montré qu’il étaitpossible de simuler puis de prédire un domaine de soudabilité. / In the field of metallic materials, welding technologies can provide significantmass reductions and cost savings to aircraft industries. Nevertheless, classical fusionwelding processes can not be applied to last generations of aeronautical aluminiumalloys. In this context, Friction Stir Welding offers many advantages and can helpmetallic parts to face the build up of composite materials.This thesis has mainly two objectives. We aim first at improving our understandingof Friction Stir Welding with Bobbin Tool and then at proposing a kind ofmethodology able to predict optimal welding parameters.Welding trials were carried out using three aeronautical aluminium alloys includingtwo aluminium lithium and two thicknesses representative of a fuselagejunction. Results were analyzed and some correlations were found between weldingparameters, temperature and stirring of the weld nugget.This work was also supported by several modeling tools. A local thermo-fluidapproach has been used to simulate stirring of the material in the weld nugget. Aglobal thermal model has been used to simulate heat diffusion in the structure. Then,a coupled approach of these previous modeling tools shows that it was possible tonumerically predict a processing window.
|
8 |
Modélisation numérique et analyse mécanique de l'usinage de grandes pièces aéronautiques : Amélioration de la qualité d'usinage / Numerical modelling and mechanical analysis of the machining of large aeronautical parts : Machining quality improvementCerutti, Xavier 04 December 2014 (has links)
La fabrication des grandes pièces structurelles aéronautiques en alliage d'aluminium nécessite la réalisation de multiples étapes de mises en forme (laminage, matriçage, etc...) et de traitements thermiques. Les différents chargements mécaniques et thermiques subis par les pièces pendant ces étapes de fabrication induisent des déformations plastiques ainsi que des modifications de la microstructure, qui sont sources de contraintes résiduelles. La géométrie finale des pièces est obtenue par usinage, qui est généralement la dernière étape de fabrication. Jusqu'à 90% du volume de matière initial peut être enlevé durant l'usinage de grandes pièces aéronautiques, qui peuvent également présenter des géométries complexes. La redistribution des contraintes résiduelles pendant l'usinage est une des principales causes de non-conformité des pièces avec les tolérances géométriques et dimensionnelles et donc de non-acceptation de celles-ci.De nos jours, les contraintes résiduelles et leurs effets pendant l'usinage ne sont généralement pas pris en compte lors de la définition des gammes d'usinage. Ce travail de thèse vise donc à proposer une évolution dans l'établissement des gammes d'usinage des pièces de structures en alliage d'aluminium et a été construit autour de deux principaux axes de recherche: un axe numérique et un axe d'analyse mécanique.L'axe numérique est basé sur la mise en place d'une approche de modélisation et le développement d'un outil numérique adapté à la simulation de l'usinage. L'approche de modélisation a été définie à partir d'hypothèses déduites d'études bibliographiques sur les alliages d'aluminium, le procédé d'usinage et les contraintes résiduelles. Une approche numérique d'enlèvements massifs de matière a ainsi été développée et tous les développements ont été intégrés dans les codes sources de FORGE® dans un environnement parallèle.L'axe d'analyse mécanique est basé sur l'étude de la redistribution des contraintes résiduelles et des déformations associées lors de l'usinage. Une première étude appliquée à la méthode expérimentale utilisée pour déterminer les profils de contraintes résiduelles dans des tôles laminées en alliage AIRWARE® 2050-T84 a été réalisée. Les simulations de ces essais ont permis une première validation de l'outil numérique développé et ont démontré la nécessité de définir des gammes d'usinage en fonction des contraintes résiduelles. D'autres études sur l'influence de certains paramètres définis dans les gammes d'usinage sur la qualité d'usinage ont également été menées. Les simulations réalisées ont été validées par de multiples comparaisons avec des résultats expérimentaux, montrant la capacité de l'outil numérique à prédire précisément la géométrie finale des pièces.A l'aide des résultats obtenus sur les précédentes études, une procédure numérique et de premières recommandations pour la définition de gammes d'usinage permettant d'obtenir la qualité d'usinage souhaitée en tenant compte des contraintes résiduelles initiales ont été mises en place. / The manufacturing of aluminium alloy structural aerospace parts involves multiple forming (rolling, forging, etc.) and heat treatment steps. The mechanical and thermal loads that the workpieces undergo during these manufacturing steps result in unequal plastic deformation and in metallurgical changes which are both sources of residual stresses. Machining is usually the last manufacturing step during which the final geometry of the parts is obtained. Up to 90% of the initial volume of the workpiece can be removed during the machining of aerospace structural parts which can furthermore have complex geometries. The residual stress redistribution is one of the main causes of the non-conformity of parts with the geometrical and dimensional tolerance specifications and therefore of the rejection of parts.Nowadays, initial residual stresses and their effect during the machining are often not taken into account in the definition of the machining process plan. This work aims to propose an evolution in the establishment of machining process plans of aluminium structural parts. It has been organised along two principal lines of research: a numerical line and a mechanical analysis line.The numerical line is based on the development of a modelling approach and of a numerical tool adapted to the simulation of the machining process. The modelling approach has been defined based on assumptions deduced from literature reviews on aluminium alloys, on the machining process and on residual stresses. A massive material removal approach has then been developed. All the numerical developments have been implemented into the finite element software FORGE® and are suited to a parallel computing environment.The mechanical analysis line is based on the study of the residual stress redistribution and its effect on the workpiece deflections during the machining as well as on the post-machining distortion. A first study on the layer removal method used to determine the initial residual stress profiles in an AIRWARE® 2050-T84 2050-T84 alloy rolled plate has been realised. The simulation of these experiments has allowed a first validation of the numerical tool and to demonstrate the necessity to define machining process plans in function of the residual stresses. Other studies on the influence of some machining process parameters on the machining quality have then been performed. Simulation results have been validated by multiple comparisons with experimental tests, showing the capability of the numerical tool to predict the final machined part geometries.Using the results of the studies mentioned above, a numerical procedure and first recommendations for the definition of machining process plans allowing to obtain the desired machining quality depending on the initial residual stresses have been established.
|
9 |
Extrusion Processing Of Aluminium-Lithium Alloy 1441Chandramohan, G 09 1900 (has links) (PDF)
No description available.
|
10 |
Effets de la texture cristallographique sur les propriétés mécaniques statiques de l'alliage aéronautique AL-LI 2099Bois-Brochu, Alexandre 24 April 2018 (has links)
L'ajout de lithium dans les alliages d'aluminium permet de diminuer leur masse volumique tout en augmentant leur rigidité. En considérant des propriétés mécaniques aux moins égales aux alliages traditionnels d'aluminium, il est facile de comprendre pourquoi ces nouveaux alliages deviennent intéressants dans le domaine de l'aéronautique. En effet, la diminution de la masse volumique permettra de diminuer la consommation d'essence due au poids plus faible des composantes. Le domaine de l'aéronautique demandant des contraintes de sécurité majeures, il est donc important de bien comprendre les propriétés mécaniques des alliages d'aluminium-lithium ainsi que les différents phénomènes influençant ces propriétés. La résistance mécanique des alliages d'aluminium-lithium est améliorée par la présence de plusieurs types de précipités qui entravent le mouvement des dislocations. Les alliages Al-Li-x actuels utilisent plusieurs précipités semi-cohérents et cohérents pour le durcissement. L'avantage d'utiliser une co-précipitation de δ' (Al₃Li), T1 (Al₂CuLi) et de S' (Al₂CuMg) provient du fait que ces phases métastables précipitent sur différents plans, ce qui optimise le blocage du mouvement des dislocations. La microstructure obtenue en est une qui est rarement recristallisée dû à la présence de précipités cohérents Al₃Zr qui empêche la recristallisation. Par conséquent, ces alliages présentent des propriétés mécaniques anisotropes, qui ne sont pas équivalentes dans toutes les directions. Ceci est causé par la présence de textures cristallographiques, particulièrement la texture fibre <111>. Les propriétés mécaniques obtenues dans l'alliage 2099 T83 étudié varient selon les emplacements et selon l'orientation des échantillons par rapport à l'axe de déformation (extrusion). Les résistances sont plus élevées dans la direction longitudinale d'un profilé cylindrique qui présente aussi les plus fortes intensités de texture fibre <111>. Grâce à la caractérisation mécanique, microstructurale et de la texture cristallographique, des modèles permettant de prédire l'anisotropie et les propriétés mécaniques en fonction de l'intensité de la texture fibre <111> ont pu être développés. Par la suite, l'effet de la densité de précipités T₁ sur l'anisotropie des propriétés mécaniques statiques a pu être démontrée.
|
Page generated in 0.0695 seconds