1 |
Vibration Assisted Drilling of Aluminum 6061-T6Chang, Simon, Shuet Fung 03 1900 (has links)
<p> Burr formation is a frequent problem in metal cutting. Burrs, which are defined as undesired projections of material resulting from plastic deformation, affect the precision of machined components and can negatively affect the assembly process. One common burr is the exit burr that forms when drilling ductile materials such as aluminum alloy. Deburring, the process of removing burrs, can account for up to 30% of the total production cost. If the burr size can be reduced, the deburring effort can also be reduced or even eliminated, resulting in an improvement in productivity and an increase in profit. </p> <p> There are different methods to reduce burr formation in drilling. One method is known as vibration assisted drilling. Vibration assisted drilling has been reported as an effective method to reduce burr height without reducing the material removal rate or permanently altering the mechanical behavior of the workpiece material. Other reported benefits of vibration assisted drilling include improvement of tool life and better machined surface quality. However, it has been reported that poor choice of vibration conditions (frequency and amplitude) can increase burr height. No accurate analytical model exists in the current literature that can predict the exit burr height for vibration assisted drilling. To predict exit burr height, a model capable of predicting thrust force accurately is important because higher thrust force produces larger exit burr. Clearly there is a need to develop these models. </p> <p> This thesis presents the development of analytical models for predicting thrust force and exit burr height for vibration assisted drilling of aluminum 6061-T6. The developed models incorporate all significant characteristics of vibration assisted drilling to achieve accurate predictions. Drilling experiments were performed over a range of cutting and vibration conditions. The experimental results demonstrate that the developed thrust force model improves the accuracy by up to 45% in comparison to the existing vibration assisted drilling models. The developed burr height model accurately predicts the exit burr height for vibration assisted drilling, with an averaged deviation of 10% from the experimental results. The developed models are also applicable to conventional drilling. Comparing with the existing drilling models, the new models improve the accuracy of thrust force and burr height predictions by 6 and 36% respectively. A fast analytical method has also been developed that predicts the favourable vibration conditions that minimize burr height. The predictions obtained using this method are consistent with the experimental results. Drilling experiments for combined frequency vibration assisted drilling were also performed over a range of vibration conditions. The experimental results demonstrate that combining two different favourable vibration conditions together produces greater mean thrust force reduction than using a single frequency vibration assistance. </p> / Thesis / Doctor of Philosophy (PhD)
|
2 |
Development of a dynamic torsion testing systemWilliams, Stephen Vargo 28 July 2014 (has links)
The aim of this thesis is to design and build a torsional Kolsky bar apparatus for testing cylindrical specimens in torsion at high strain-rates. In addition to well-established designs, this testing apparatus will include a conical mirror combined with a high speed camera that allows time-resolved optical observation of the shear deformation on the surface of the specimen. The basic design of a Kolsky bar consists of a loading bar, input bar, specimen, and output bar. The experiment is conducted by storing torque in the loading bar and then releasing the torque by breaking the clamp and sending a shear wave pulse through the apparatus into the specimen. This shear wave pulse is monitored by strain gages mounted on the input and output bars. Analysis of the strain waves in the input and output bar is used to extract the shear stress - shear strain profile of the specimen. Several experiments were conducted on 6061-O and 1100-O aluminum with wall thicknesses ranging from 0.3 to 1.5 mm. / text
|
3 |
Evaluation of the effects of rotational speed on microstructural and mechanical properties of additive friction stir deposited aluminum 6061McCabe, Emily Margaret 06 August 2021 (has links) (PDF)
Additive friction stir deposition is characterized by rotating a consumable feedstock rod that induces severe plastic deformation to deposit material additively without raising the material past its melting point. In this way, additive friction stir deposition differs from traditional additive manufacturing, and new developments in this technology require further investigation of build parameters, tooling, and resultant builds to better understand this printing process and its applications. This thesis evaluated the effect of rotational speed on aluminum 6061 builds using mechanical testing and microstructural investigations. Three different build conditions were evaluated at 180 RPM, 240 RPM, and 300 RPM. Mechanical testing methods were used to determine hardness values, ultimate tensile strength, yield strength, elastic modulus, and density. Imaging techniques including optical microscopy, electron backscatter diffraction, energy dispersive x-ray spectroscopy, and x-ray computed tomography were used to evaluate microstructure, grain size, chemical composition, and porosity.
|
4 |
Novel design and optimization of vehicle's natural gas fuel tankChen, Shr-Hung January 1997 (has links)
No description available.
|
5 |
The Effect of Tool Rotation Speed and Clamping on Deformation in Friction Stir Welded 6061-T6511 Aluminum ExtrusionsSmith, Travis Lee 04 August 2011 (has links)
Friction Stir Welding (FSW) was used to perform Bead on Plate (BOP) welds on 6061-T6511 aluminum extrusions. Using a DOE approach, tool rotation speed, clamp spacing, and clamping force were altered to ascertain their effects on distortion in the welded panels. Mechanical forces were monitored during the weld process. Both linear and out of plane distortion were measured on the welded extrusions. The Vickers hardness of the weld nugget was measured. The effect of each parameter on weld distortion was discovered and the mechanism of this link was suggested.
|
6 |
Determination of Wall Thickness and Height when Cutting Various Materials with Wire Electric Discharge Machining ProcessesKim, Sangseop 18 March 2005 (has links)
This thesis looks at the capabilities of cutting thin webs on Wire EDM machines that are difficult or impossible to machine using conventional methods. Covered is an investigation of how different material and web thickness affect the capability of machining thin-walled parts.
Five different metals are used for the test; Aluminum 6061 T6, Yellow Brass SS360, 420 Stainless Steel, D2 unheat-treated tool steel 25-30 RC, and D2 heat-treated tool steel 60-65 RC. The small parts were cut to a 6mm (0.2362 inch) height with six different wall thicknesses: 0.30mm (0.0118 inch), 0.25mm (0.0098 inch), 0.20mm (0.0078 inch), 0.15mm (0.0059 inch), 0.10mm (0.0039 inch), and 0.05mm (0.0020 inch). A Sodick AQ325L Wire EDM machine was utilized for testing.
The methods employed during the study include the following:
• Machine settings and offsets were limited to the default setting selected from the Sodick AQ325L database.
• Two different pre-test cuts were taken on the material to check for web bending during the cutting process.
• Hardness was tested for comparison of the web heights.
This thesis shows that bending increased as webs became thinner and that bending occurred toward the wire as the second side of the web was cut. Bending does affect the height of the web. Physical properties of materials also impacted the height of the web with the hardest material staying intact during the cutting process. This study shows that two factors, physical properties of materials and web thickness, significantly affect cutting results for thin web parts.
|
7 |
Development of a Metal-Metal Powder Formulations Approach for Direct Metal Laser Melting of High-Strength Aluminum AlloysBradford-Vialva, Robyn L. 18 May 2021 (has links)
No description available.
|
8 |
ANALYSIS OF FRICTION STIR ADDITIVE MANUFACTURING AND FRICTION STIR WELDING OF AL6061-T6 VIA NUMERICAL MODELING AND EXPERIMENTSNitin Rohatgi (9757331) 14 December 2020
<div>Aluminum 6061 is extensively used in industry and welding and additive manufacturing (AM) of Al6061 offer flexibility in manufacturing. Solid-state welding and AM processes can overcome the shortcomings of fusion-based processes, such as porosity and hot cracking. In this thesis, friction stir welding and friction stir additive manufacturing, which are both based on the concepts of friction stir processing (solid-state), were studied. The welding parameters for a sound weld during friction stir welding of Al6061-T6 alloy were determined based on the experimental and numerical analysis. Formation of tunnel defects and cavity defects was also studied. A Coupled Eulerian-Lagrangian (CEL) finite element model was established to analyze the process, where the workpiece was modeled as an Eulerian body, and the tool as Lagrangian. The model was validated by conducting experiments and correlating the force measured by a three-axis dynamometer. The experimentally validated simulation model was used to find an optimum parameter set for the sound weld case.</div><div>To demonstrate the friction stir additive manufacturing process, a 40 mm × 8 mm × 8 mm (L×B×H) material was fabricated by adding five 1.6 mm thick plates. A similar coupled Eulerian-Lagrangian based finite element model was used to predict the effects of sound process parameters, such as the tool’s rotational speed and the translational speed. The temperature predicted by the model was used to predict the microhardness distribution in the sample and to further elucidate the hardness change in the weld zone, which showed a good agreement with the experimental results. The microstructure of the samples was analyzed, and the mechanical properties of the additive manufactured samples were characterized and compared with those of other AM techniques via tensile tests and tensile shear tests.</div>
|
9 |
A Framework for Enhancing the Accuracy of Ultra Precision MachiningMeyer, Paula Alexandra 07 1900 (has links)
This thesis is titled "A Framework for Enhancing the Accuracy of Ultra Precision Machining." In this thesis unwanted relative tool / workpiece vibration is identified as a major contributor to workpiece inaccuracy. The phenomenon is studied via in situ vibrational measurements during cutting and also by the analysis of the workpiece surface metrology of ultra precision diamond face turned aluminum 6061-T6. The manifestation of vibrations in the feed and in-feed directions of the workpiece was studied over a broadband of disturbance frequencies. It is found that the waviness error measured on the cut workpiece surface was significantly larger than that caused by the feed marks during cutting. Thus it was established that unwanted relative tool / workpiece vibrations are the dominant source of surface finish error in ultra precision machining. By deriving representative equations in the polar coordinate system, it was found that the vibrational pattern repeats itself, leading to what are referred to in this thesis as surface finish lobes. The surface finish lobes describe the waviness or form error associated with a particular frequency of unwanted relative tool / workpiece vibration, given a particular feed rate and spindle speed. With the surface finish lobes, the study of vibrations is both simplified and made more systematic. Knowing a priori the wavelength range caused by relative tool / workpiece vibration also allows one to extract considerable vibration content information from a small white light interferometry field of view. It was demonstrated analytically that the error caused by relative tool / workpiece vibration is always distinct from the surface roughness caused by the feed rate. It was also shown that the relative tool / workpiece vibration-induced wavelength in the feed direction has a limited and repeating range. Additionally, multiple disturbance frequencies can produce the same error wavelength on the workpiece surface. Since the meaningful error wavelength range is finite given the size of the part and repeating, study then focussed on this small and manageable range of wavelengths. This range of wavelengths in turn encompasses a broadband range of possible disturbance frequencies, due to the repetition described by the surface finish lobes. Over this finite range of wavelengths, for different machining conditions, the magnitude of the waviness error resulting on the cut workpiece surface was compared with the actual relative tool / workpiece vibrational magnitude itself. It was found that several opportunities occur in ultra precision machining to mitigate the vibrational effect on the workpiece surface. The first opportunity depends only on the feed rate and spindle speed. Essentially, it is possible to force the wavelength resulting from an unwanted relative tool / workpiece vibration to a near infinite length, thus eliminating its effect in the workpiece feed direction. Further, for a given disturbance frequency, various speed and feed rate combinations are capable of producing this effect. However, this possibility exists only when a single, dominant and fixed disturbance frequency is present in the process. By considering the tool nose geometry, depth of cut, and vibrational amplitude over the surface finish lobe finite range, it was found that the cutting parameters exhibit an attenuating or filtering effect on vibrations. Thus, cutting parameters serve to mitigate the vibrational effect on the finished workpiece over certain wavelengths. The filter curves associated with various feed rates were compared. These filter curves describe the magnitude of error on the ultra precision face turned workpiece surface compared with the original unwanted tool / workpiece vibrational magnitude. It was demonstrated with experimental data that these filter curves are physically evident on the ultra precision diamond face turned workpiece surface. It was further shown that the surface roughness on the workpiece surface caused by the feed rate was reduced with relative tool / workpiece vibrations, and in some cases the feed mark wavelength was changed altogether. Mean arithmetic surface roughness curves were also constructed, and the filtering phenomenon was demonstrated over a broadband of disturbance frequencies. It is well established that a decrease in the feed rate reduces the surface roughness in machining. However, it was demonstrated that the improved surface finish observed with a slower feed rate in ultra precision diamond face turning was actually because it more effectively mitigated the vibrational effect on the workpiece surface over a broadband of disturbance frequencies. Experimental findings validated this observation. By only considering the effect of vibrations on the surface finish waviness error, it was shown that the workpiece diamond face turned with a feed rate of 2 {tm / rev has a mean arithmetic surface roughness, Ra , that was 43 per cent smaller than when a feed rate of 10 μm / rev was used. / Thesis / Doctor of Philosophy (PhD)
|
10 |
Critical Erosion/Corrosion Piping Wall Thicknesses Under Static and Fatigue Stress Conditions According to ASME GuidelinesComeau, Christian R. 08 October 2001 (has links)
The purpose of this project was to show the updated procedures and to make additions to the computer program called Tmin designed by E. I. DuPont De Nemours and Company. This program is used as a screening tool for determining the largest of the minimum pipe-wall thicknesses in a piping system.
This project involved several additions that will be released in the next version of the Tmin computer program. The first major additions to be implemented are four alternating Stress-to-Number of cycles curves: Aluminum 1100, Aluminum 3003-0, Aluminum 6061-T6, and Nickel 200. In addition, procedures of the ASME for fatigue curve analysis and implementation of fatigue data were investigated. These four stress-to-number of cycles (S-N) fatigue curves were added to Tmin's internal Microsoft Access® database. Next, a 2-D vertical piping span configuration was incorporated. Finally, DuPont required a Microsoft Word® document output of the pipe-wall thickness data including the piping span model information. Other user-friendly additions were included.
Since this computer program was to be American Society of Mechanical Engineers (ASME) compliant, a study of the ASME Pressure Vessel and Piping standards and codes was made to determine how pipe-wall thickness calculations were to be processed. The 2-D vertical piping span calculation procedures were investigated. Once the 2-D vertical piping span analysis was complete, the largest pipe-wall thickness value calculated were passed to a Microsoft Word® document. The last implementation is the inclusion of help files. Help file button additions in all input boxes allowed for the user to know exactly what was needed before a data entry was made. / Master of Science
|
Page generated in 0.0445 seconds