• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 11
  • 11
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation of a membrane reactor for ammonia decomposition /

Kraisuwansarn, Nichakorn. January 1991 (has links)
Thesis (M.S.)--Oregon State University, 1992. / Typescript (photocopy). Includes bibliographical references (leaves 82-85). Also available on the World Wide Web.
2

Discovery and mechanistic investigation of nitrogen oxides traps and ammonia decomposition catalysts using high-throughput experimentation

Vijay, Rohit. January 2008 (has links)
Thesis (Ph.D.)--University of Delaware, 2007. / Principal faculty advisor: Jochen A. Lauterbach, Dept. of Chemical Engineering. Includes bibliographical references.
3

Density functional theory and kinetic study of catalytic methane conversion and ammonia decomposition

Holiharimanana, Domoina 01 December 2023 (has links) (PDF)
The price fluctuation and depletion of crude oil have led to the fervent interest in finding alternatives that can satisfy our increasing need for energy. In the past decades, two primary approaches are seen as promising ways to remedy our dependence on crude oil: first, the use of natural gas, primarily methane, to produce high-value hydrocarbons, and second, the use of ammonia as a hydrogen carrier. In this dissertation, we used density functional theory (DFT) calculation and kinetic modeling to investigate methane activation and C-C coupling on WC as well as the ammonia decomposition over the CoNi alloy surface. From our methane conversion project, we investigated the reactivity of W-terminated WC(0001) and WC(112 ̅0) surface toward methane activation and conversion to produce C2 moieties using DFT. We first calculate the intermediates binding energies and activation and reaction energies of methane dissociation. We found that WC(112 ̅0) is better at dissociating the first C–H bond than WC(0001). Our results also indicate that the surface is likely populated by (CH)ads species. The mobility of (CH)ads species on both surfaces allows the possibility of C-C coupling, resulting in a precursor for higher hydrocarbon formation. Our results also demonstrate that the WC(0001) surface favors the production of the (C2H2)ads species, whereas the WC(112 ̅0) surface dissociates CHx completely, resulting in coke formation. Thus, methane dissociates readily on the WC surfaces whereas the formation of the C2 species is sensitive to the surface structure. The DFT study on ammonia decomposition has been performed in close collaboration with the experimental study. A highly active catalyst consisting of CoNi alloy nanoparticles well-dispersed on a MgO–CeO2–SrO mixed oxide support with potassium promotion exhibited a performance matching that of the Ru-based catalysts. Extensive characterization in combination with the DFT results revealed that the CoNi alloy surface and metal/oxide interfaces are the active sites for catalytic decomposition of ammonia. Moreover, the much improved catalytic activity stems mainly from the presence of interface where the recombinative desorption of nitrogen has been greatly enhanced. These have been demonstrated by examining the detailed elementary steps of ammonia decomposition on the Co, Ni, Co2Ni, CoNi2 (111) surfaces and at the CeO2/Co2Ni interface. We calculated the binding energies of intermediates and the activation energies of each elementary step in ammonia decomposition. We found that on the Co, Ni, Co2Ni, CoNi2 surfaces, N–N bond formation is the rate-determining step, with the CoNi alloy surfaces having a lower activation energy than the pure metal surfaces. Over the CeO2/Co2Ni interface, however, N–H bond dissociation becomes rate-determining. The high catalytic activity at the CeO2/Co2Ni interface originates from the localized charge polarization due to alloying and the presence of the oxide which drastically facilitates N2* formation. We then integrated the DFT-calculated adsorption and activation energies in the microkinetic modeling of ammonia decomposition on the Co, Co2Ni, CoNi2, and Ni surfaces, focusing on the alloying effect. Two cases were investigated: ammonia decomposition in the 1) absence and 2) presence of product re-adsorption. In both cases, we determined the turnover frequencies, the apparent activation energies, the steady-state coverages, the degree of rate control, and the reaction orders. Our results show that in both cases, the alloys have higher catalytic performance than the pure metals. We also found that as the temperature increases, ammonia decomposition switches from being limited by N–N (and N–NH) bond formation to N–H bond dissociation. This change of mechanism is predicted to occur at lower temperatures on the alloy surfaces. In the case of hydrogen re-absorption, the surface H* adatom retards the last N–H bond-breaking step, resulting in the high coverage of NH* species on the surfaces, making N–NH coupling an alternative pathway for N2 formation. Furthermore, our microkinetic results show that alloying Ni with Co reduces the effect of hydrogen inhibition at high hydrogen partial pressures. In summary, this dissertation provides information for the design of efficient catalysts toward methane conversion and ammonia decomposition.
4

Kinetic modeling and packed bed membrane reactor scale-up for ammonia decomposition

Realpe, Natalia 04 1900 (has links)
Hydrogen economy is capitalizing the decarbonization of transport and industrial sectors. Ammonia is an attractive intermediate to store and transport hydrogen, due to its low production cost, well developed storage and transportation infrastruc- ture, high hydrogen density in its liquified form (for transportation) and the potential production from renewable energy sources. Although there have been significant ad- vancements in catalyst development for ammonia decomposition, the potential of this technology cannot be fully exploited until significant process development is made. In this sense, catalytic membrane reactors show promising features and performances. In this work, ammonia decomposition has been studied using the following ap- proach: (1) Catalytic Packed Bed Reactor (CPBR) and kinetic modeling, (2) Cat- alytic Packed Bed Membrane Reactor (CPBMR) modeling and (3) CPBMR scale-up. Stage (1) was performed using Ru-K/CaO and Co-Ce catalysts over a wide range of experimental conditions (including pressures up to 16 bar). Stage (2) includes 1-D and 2-D models that were further validated experimentally, also using different software to tackle the stage (3), which aims to give the optimized geometry and properties of a CPBMR for a production of 5 N m3 h−1 of high purity H2 . The results presented in this Thesis enabled to: (1) obtain a reliable kinetic model capable of describing the ammonia decomposition under a wide range of operating conditions, using Ru-K/CaO and Co-Ce catalysts. (2) identify a range of operat- ing conditions where the CPBMR performs better than the CPBR in terms of NH3 conversion, H2 recovery and H2 purity. This range includes: reaction temperature between 250◦C and 500◦C; reaction pressures between 1 and 16 bar; space times be- tween 1 and 15 gcat h mol−1 and H2 permeate pressure higher than the atmospheric pressure (up to 5 bar). (3) scale-up the CPBMR for ammonia decomposition at a pilot scale, encountering that a pilot plant for a production of 5 N m3 h−1 of pure H2 ( >99.99%) could be obtained with a relatively small multitubular arraignment, that might be even smaller than the needed for the same product using other technology.
5

Studies on catalyst materials and operating conditions for ammonia decomposition / アンモニア分解における触媒材料及び動作条件の研究

Younghwan, Im 24 November 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23578号 / 工博第4933号 / 新制||工||1770(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 江口 浩一, 教授 陰山 洋, 教授 阿部 竜 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
6

Development of low temperature catalysts for an integrated ammonia PEM fuel cell

Hill, Alfred January 2017 (has links)
It is proposed that an integrated ammonia-PEM fuel cell could unlock the potential of ammonia to act as a high capacity chemical hydrogen storage vector and enable renewable energy to be delivered eectively to road transport applications. Catalysts are developed for low temperature ammonia decomposition with activity from 450 K (ruthenium and cesium on graphitised carbon nanotubes). Results strongly suggest that the cesium is present on the surface and close proximity to ruthenium nanoparticles and that it produces activity in ruthenium by donation of electrons. The activity of sustainable cobalt for ammonia decomposition is shown to be a function of particle size and is more active on microporous carbon supports compared to mesoporous ones. Unlike ruthenium, activity for cobalt was not inuenced by the degree of surface graphitic nature and cobalt supported on microporous carbon approached the activity of ruthenium on the same support. In accordance with the sustainable objectives of this thesis, a case-study on the sustainability of ammonia as a sustainable hydrogen storage vector was undertaken. In this scheme, hydrogen produced from renewable electricity by electrolysis is con- verted to ammonia by the Haber-Bosch process and then converted back to deliver pure hydrogen at the point of use. The energy eciency and carbon footprint fell short of targets set by the US Department of Energy and the UK Department for Transport, the biggest impact was the production of hydrogen by electrolysis and not the Haber-Bosch process which accounts for only 9 % of total energy losses. To assess the feasibility of the ammonia-PEM fuel cell, a conceptual design was un- dertaken to quantify the palladium membrane size and catalyst quantity required for a typical road transport vehicle. The predicted quantity of palladium was excessive and future work must consider improvements to membrane technology.
7

Design of Experiments for Large Scale Catalytic Systems

Kumar, Siddhartha Unknown Date
No description available.
8

Performance, Temperature and Concentration Profiles in a Non-Isothermal Ammonia-Fueled Tubular SOFC

Jantakananuruk, Nattikarn 18 April 2019 (has links)
Ammonia has emerged as an attractive potential hydrogen carrier due to its extremely high energy density (hydrogen density), ease of storage and transportation as a liquid, and carbon-free nature. Direct utilization of ammonia in high-temperature solid oxide fuel cells (SOFCs) has been demonstrated over the past decade. Concurrence of in situ endothermic ammonia decomposition and exothermic electrochemical hydrogen oxidation permit efficient heat integration. In this study, the experimental analyses of axial temperature and concentration profiles along the tubular SOFC (t-SOFC) fed directly with ammonia are performed to investigate the coupled ammonia decomposition and hydrogen oxidation reactions as well as the effect of polarization. Fast ammonia decomposition over the Ni catalyst is evident at the inlet of t-SOFC and complete ammonia conversion is confirmed above 600ºC. It is found that direct ammonia-fueled t-SOFC and an equivalent hydrogen-nitrogen fueled t-SOFC provide identical performances. With 100 SCCM of ammonia fuel feed, a maximum power of 12.2 W and fuel utilization of 81% are obtained at 800ºC in a t-SOFC with active area of 32 cm2. The temperature and concentration profiles validate that the efficient heat integration inside ammonia-fueled t-SOFC is feasible if t-SOFC is operated at the temperature of 700ºC and below. The 23-hour performance test and SEM-EDS images of the fresh and used Ni-YSZ cermet surfaces confirm uniform performance and good durability of ammonia t-SOFC.
9

Experimental and modelling evaluation of an ammonia-fuelled microchannel reactor for hydrogen generation / Steven Chiuta

Chiuta, Steven January 2015 (has links)
In this thesis, ammonia (NH3) decomposition was assessed as a fuel processing technology for producing on-demand hydrogen (H2) for portable and distributed fuel cell applications. This study was motivated by the present lack of infrastructure to generate H2 for proton exchange membrane (PEM) fuel cells. An overview of past and recent worldwide research activities in the development of reactor technologies for portable and distributed hydrogen generation via NH3 decomposition was presented in Chapter 2. The objective was to uncover the principal challenges relating to the state-of-the-art in reactor technology and obtain a basis for future improvements. Several important aspects such as reactor design, operability, power generation capacity and efficiency (conversion and energy) were appraised for innovative reactor technologies vis-à-vis microreactors, monolithic reactors, membrane reactors, and electrochemical reactors (electrolyzers). It was observed that substantial research effort is required to progress the innovative reactors to commercialization on a wide basis. The use of integrated experimental-mathematical modelling approach (useful in attaining accurately optimized designs) was notably non-existent for all reactors throughout the surveyed openliterature. Microchannel reactors were however identified as a transformative reactor technology for producing on-demand H2 for PEM cell applications. Against this background, miniaturized H2 production in a stand-alone ammonia-fuelled microchannel reactor (reformer) washcoated with a commercial Ni-Pt/Al2O3 catalyst (ActiSorb® O6) was demonstrated successfully in Chapter 3. The reformer performance was evaluated by investigating the effect of reaction temperature (450–700 °C) and gas-hourly-space-velocity (6 520–32 600 Nml gcat -1 h-1) on key performance parameters including NH3 conversion, residual NH3 concentration, H2 production rate, and pressure drop. Particular attention was devoted to defining operating conditions that minimised residual NH3 in reformate gas, while producing H2 at a satisfactory rate. The reformer operated in a daily start-up and shut-down (DSS)-like mode for a total 750 h comprising of 125 cycles, all to mimic frequent intermittent operation envisaged for fuel cell systems. The reformer exhibited remarkable operation demonstrating 98.7% NH3 conversion at 32 600 Nml gcat -1 h-1 and 700 °C to generate an estimated fuel cell power output of 5.7 We and power density of 16 kWe L-1 (based on effective reactor volume). At the same time, reformer operation yielded low pressure drop (<10 Pa mm-1) for all conditions considered. Overall, the microchannel reformer performed sufficiently exceptional to warrant serious consideration in supplying H2 to low-power fuel cell systems. In Chapter 4, hydrogen production from the Ni-Pt-washcoated ammonia-fuelled microchannel reactor was mathematically simulated in a three-dimensional (3D) CFD model implemented via Comsol Multiphysics™. The objective was to obtain an understanding of reaction-coupled transport phenomena as well as a fundamental explanation of the observed microchannel reactor performance. The transport processes and reactor performance were elucidated in terms of velocity, temperature, and species concentration distributions, as well as local reaction rate and NH3 conversion profiles. The baseline case was first investigated to comprehend the behavior of the microchannel reactor, then microstructural design and operating parameters were methodically altered around the baseline conditions to explore the optimum values (case-study optimization). The modelling results revealed that an optimum NH3 space velocity (GHSV) of 65.2 Nl gcat -1 h-1 yields 99.1% NH3 conversion and a power density of 32 kWe L-1 at the highest operating temperature of 973 K. It was also shown that a 40-μm-thick porous washcoat was most desirable at these conditions. Finally, a low channel hydraulic diameter (225 μm) was observed to contribute to high NH3 conversion. Most importantly, mass transport limitations in the porouswashcoat and gas-phase were found to be negligible as depicted by the Damköhler and Fourier numbers, respectively. The experimental microchannel reactor produced 98.2% NH3 conversion and a power density of 30.8 kWe L-1 when tested at the optimum operating conditions established by the model. Good agreement with experimental data was observed, so the integrated experimental-modeling approach used here may well provide an incisive step toward the efficient design of ammonia-fuelled microchannel reformers. In Chapter 5, the prospect of producing H2 via ammonia (NH3) decomposition was evaluated in an experimental stand-alone microchannel reactor wash-coated with a commercial Cs-promoted Ru/Al2O3 catalyst (ACTA Hypermec 10010). The reactor performance was investigated under atmospheric pressure as a function of reaction temperature (723–873 K) and gas-hourly-space-velocity (65.2–326.1 Nl gcat -1 h-1). Ammonia conversion of 99.8% was demonstrated at 326.1 Nl gcat -1 h-1 and 873 K. The H2 produced at this operating condition was sufficient to yield an estimated fuel cell power output of 60 We and power density of 164 kWe L-1. Overall, the Ru-based microchannel reactor outperformed other NH3 microstructured reformers reported in literature including the Ni-based system used in Chapter 3. Furthermore, the microchannel reactor showed a superior performance against a fixed-bed tubular microreactor with the same Ru-based catalyst. Overall, the high H2 throughput exhibited may promote widespread use of the Ru-based micro-reaction system in high-power applications. Four peer-reviewed journal publications and six conference publications resulted from this work. / PhD (Chemical Engineering), North-West University, Potchefstroom Campus, 2015
10

Experimental and modelling evaluation of an ammonia-fuelled microchannel reactor for hydrogen generation / Steven Chiuta

Chiuta, Steven January 2015 (has links)
In this thesis, ammonia (NH3) decomposition was assessed as a fuel processing technology for producing on-demand hydrogen (H2) for portable and distributed fuel cell applications. This study was motivated by the present lack of infrastructure to generate H2 for proton exchange membrane (PEM) fuel cells. An overview of past and recent worldwide research activities in the development of reactor technologies for portable and distributed hydrogen generation via NH3 decomposition was presented in Chapter 2. The objective was to uncover the principal challenges relating to the state-of-the-art in reactor technology and obtain a basis for future improvements. Several important aspects such as reactor design, operability, power generation capacity and efficiency (conversion and energy) were appraised for innovative reactor technologies vis-à-vis microreactors, monolithic reactors, membrane reactors, and electrochemical reactors (electrolyzers). It was observed that substantial research effort is required to progress the innovative reactors to commercialization on a wide basis. The use of integrated experimental-mathematical modelling approach (useful in attaining accurately optimized designs) was notably non-existent for all reactors throughout the surveyed openliterature. Microchannel reactors were however identified as a transformative reactor technology for producing on-demand H2 for PEM cell applications. Against this background, miniaturized H2 production in a stand-alone ammonia-fuelled microchannel reactor (reformer) washcoated with a commercial Ni-Pt/Al2O3 catalyst (ActiSorb® O6) was demonstrated successfully in Chapter 3. The reformer performance was evaluated by investigating the effect of reaction temperature (450–700 °C) and gas-hourly-space-velocity (6 520–32 600 Nml gcat -1 h-1) on key performance parameters including NH3 conversion, residual NH3 concentration, H2 production rate, and pressure drop. Particular attention was devoted to defining operating conditions that minimised residual NH3 in reformate gas, while producing H2 at a satisfactory rate. The reformer operated in a daily start-up and shut-down (DSS)-like mode for a total 750 h comprising of 125 cycles, all to mimic frequent intermittent operation envisaged for fuel cell systems. The reformer exhibited remarkable operation demonstrating 98.7% NH3 conversion at 32 600 Nml gcat -1 h-1 and 700 °C to generate an estimated fuel cell power output of 5.7 We and power density of 16 kWe L-1 (based on effective reactor volume). At the same time, reformer operation yielded low pressure drop (<10 Pa mm-1) for all conditions considered. Overall, the microchannel reformer performed sufficiently exceptional to warrant serious consideration in supplying H2 to low-power fuel cell systems. In Chapter 4, hydrogen production from the Ni-Pt-washcoated ammonia-fuelled microchannel reactor was mathematically simulated in a three-dimensional (3D) CFD model implemented via Comsol Multiphysics™. The objective was to obtain an understanding of reaction-coupled transport phenomena as well as a fundamental explanation of the observed microchannel reactor performance. The transport processes and reactor performance were elucidated in terms of velocity, temperature, and species concentration distributions, as well as local reaction rate and NH3 conversion profiles. The baseline case was first investigated to comprehend the behavior of the microchannel reactor, then microstructural design and operating parameters were methodically altered around the baseline conditions to explore the optimum values (case-study optimization). The modelling results revealed that an optimum NH3 space velocity (GHSV) of 65.2 Nl gcat -1 h-1 yields 99.1% NH3 conversion and a power density of 32 kWe L-1 at the highest operating temperature of 973 K. It was also shown that a 40-μm-thick porous washcoat was most desirable at these conditions. Finally, a low channel hydraulic diameter (225 μm) was observed to contribute to high NH3 conversion. Most importantly, mass transport limitations in the porouswashcoat and gas-phase were found to be negligible as depicted by the Damköhler and Fourier numbers, respectively. The experimental microchannel reactor produced 98.2% NH3 conversion and a power density of 30.8 kWe L-1 when tested at the optimum operating conditions established by the model. Good agreement with experimental data was observed, so the integrated experimental-modeling approach used here may well provide an incisive step toward the efficient design of ammonia-fuelled microchannel reformers. In Chapter 5, the prospect of producing H2 via ammonia (NH3) decomposition was evaluated in an experimental stand-alone microchannel reactor wash-coated with a commercial Cs-promoted Ru/Al2O3 catalyst (ACTA Hypermec 10010). The reactor performance was investigated under atmospheric pressure as a function of reaction temperature (723–873 K) and gas-hourly-space-velocity (65.2–326.1 Nl gcat -1 h-1). Ammonia conversion of 99.8% was demonstrated at 326.1 Nl gcat -1 h-1 and 873 K. The H2 produced at this operating condition was sufficient to yield an estimated fuel cell power output of 60 We and power density of 164 kWe L-1. Overall, the Ru-based microchannel reactor outperformed other NH3 microstructured reformers reported in literature including the Ni-based system used in Chapter 3. Furthermore, the microchannel reactor showed a superior performance against a fixed-bed tubular microreactor with the same Ru-based catalyst. Overall, the high H2 throughput exhibited may promote widespread use of the Ru-based micro-reaction system in high-power applications. Four peer-reviewed journal publications and six conference publications resulted from this work. / PhD (Chemical Engineering), North-West University, Potchefstroom Campus, 2015

Page generated in 0.1132 seconds