• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Treatment of High-Strength Nitrogen Wasetewater With a Hollow-Fiber Membrane-Aerated Biofilm Reactor: A Comprehensive Evaluation

Gilmore, Kevin R. 17 September 2008 (has links)
Protecting the quality and quantity of our water resources requires advanced treatment technologies capable of removing nutrients from wastewater. This research work investigated the capability of one such technology, a hollow-fiber membrane-aerated biofilm reactor (HFMBR), to achieve completely autotrophic nitrogen removal from a wastewater with high nitrogen content. Because the extent of oxygenation is a key parameter for controlling the metabolic processes that occur in a wastewater treatment system, the first part of the research investigated oxygen transfer characteristics of the HFMBR in clean water conditions and with actively growing biofilm. A mechanistic model for oxygen concentration and flux as a function of length along the non-porous membrane fibers that comprise the HFMBR was developed based on material properties and physical dimensions. This model reflects the diffusion mechanism of non-porous membranes; namely that oxygen follows a sorption-dissolution-diffusion mechanism. This is in contrast to microporous membranes in which oxygen is in the gas phase in the fiber pores up to the membrane surface, resulting in higher biofilm pore liquid dissolved oxygen concentrations. Compared to offgas oxygen analysis from the HFMBR while in operation with biofilm growing, the model overpredicted mass transfer by a factor of approximately 1.3. This was in contrast to empirical mass transfer coefficient-based methods, which were determined using either bulk aqueous phase dissolved oxygen (DO) concentration or the DO concentration at the membrane-liquid interface, measured with oxygen microsensors. The mass transfer coefficient determined with the DO measured at the interface was the best predictor of actual oxygen transfer under biofilm conditions, while the bulk liquid coefficient underpredicted by a factor of 3. The mechanistic model exhibited sensitivity to parameters such as the initial lumen oxygen concentration (at the entry to the fiber) and the diffusion coefficient and partitioning coefficients of oxygen in the silicone membrane material. The mechanistic model has several advantages over empirical-based methods. Namely, it does not require experimental determination of KL, it is relatively simple to solve without the use of advanced mathematical software, and it is based upon selection of the membrane-biofilm interfacial DO concentration. The last of these is of particular importance when designing and operating HFMBR systems with redox (aerobic/anoxic/anaerobic) stratification, because the DO concentration will determine the nature of the microenvironments, the microorganisms present, and the metabolisms that occur. During the second phase of the research, the coupling of two autotrophic metabolisms, partial nitrification to nitrite (nitritation) and anaerobic ammonium oxidation, was demonstrated in a single HFMBR. The system successfully treated a high-strength nitrogen wastewater intended to mimic a urine stream from such sources as extended space missions. For the last 250 days of operation, operating with an average oxygen to ammonia flux (J<sub>O₂</sub>/J<sub>NH₄⁺</sub>) of 3.0 resulted in an average nitrogen removal of 74%, with no external organic carbon added. Control of nitrite-oxidizing bacteria (NOB) presented a challenge that was addressed by maintaining the J<sub>O₂</sub>/J<sub>NH₄⁺</sub> below the stoichiometric threshold for complete nitrification to nitrate (4.57 g O₂ / g NH₄⁺). The DO-limiting condition resulted in formation of harmful gaseous emissions of nitrogen oxides (NO, N2O), which could not be prevented by short-term control strategies. Controlling JO2/JNH4+ prevented NOB proliferation long enough to allow an anaerobic ammoniaoxidizing bacteria (AnaerAOB) population to develop and be retained for >250 days. Addition of a supplemental nutrient solution may have contributed to the growth of AnaerAOB by overcoming a possible micronutrient deficiency. Disappearance of the gaseous nitrogen oxide emissions coincided with the onset of anaerobic ammonium oxidation, demonstrating a benefit of coupling these two autotrophic metabolisms in one reactor. Obvious differences in biofilm density were evident across the biofilm depth, with a region of low density in the middle of the biofilm, suggesting that low cell density or exocellular polymeric substances were primarily present in this region, Microbial community analysis using fluorescence in situ hybridization (FISH) did not reveal consistent trends with respect to length along the fibers, but radial stratification of aerobic ammonia-oxidizing bacteria (AerAOB), NOB, and AnaerAOB were visible in biofilm section samples. AerAOB were largely found in the first 25% of the biofilm near the membrane, AnaerAOB were found in the outer 30%, and NOB were found most often in the mid-depth region of the biofilm. This community structure demonstrates the importance of oxygen availability as a determinant of how microbial groups spatially distribute within an HFMBR biofilm. The combination of these two aspects of the research, predictive oxygen transfer capability and the effect of oxygen control on performance and populations, provides a foundation for future application of HFMBR technology to a broad range of wastewaters and treatment scenarios. / Ph. D.
22

Mathematical Modeling for Nitrogen Removal via a Nitritation: Anaerobic Ammonium Oxidation-Coupled Biofilm in a Hollow Fiber Membrane Bioreactor and a Rotating Biological Contactor

Capuno, Romeo Evasco 27 September 2007 (has links)
Mathematical models of a nitritation: anaerobic ammonia oxidation (anammox)-coupled biofilm in a counter-diffusion hollow fiber membrane bioreactor (HFMBR) and a nitritation: anammox-coupled biofilm in a co-diffusion rotating biological contactor (RBC) were developed and implemented using AQUASIM. Four different start-up scenarios on the nitritation: anammox-coupled biofilm in an HFMBR were investigated. The supply of oxygen was simulated with the flow through the lumen of the hollow fiber membrane. For the four scenarios, two scenarios investigated the start-up when nitrite was supplied in the feed while the other two scenarios investigated when the source of nitrite was through nitritation only. The results showed that the presence of nitrite in the feed facilitated the start-up of the reactor. In addition, the results also showed that increasing oxygen flux through the membrane up to a certain ratio of ammonia flux with oxygen flux affected reactor performance by improving nitrogen removal and reducing start up time. For the nitritation: anammox-coupled biofilm in an RBC, four different process options were investigated: the number of reactors, the initial anammox (AnAOB) biomass fraction, the bulk oxygen concentration and the maximum biofilm thickness. Modeling results revealed that the steady state total nitrogen removal in RBC reactors in series occurred primarily in the first and second reactors. It is concluded that the number of reactors in series dictates the effluent performance and, therefore, this number can be selected depending upon the desired total nitrogen removal. Simulation results also revealed that increasing the initial AnAOB biomass fraction from 0.01% to 1.0% had no effect in the steady state nitrogen removal but had an effect in the required time to reach the steady state total nitrogen removal and the maximum biofilm thickness. Modeling results of the third process option showed that increasing the bulk oxygen concentration in the reactor from 0.2 g/m3 to 5 g/m3 linearly increased the steady state total nitrogen removal and reduced the time to reach the maximum biofilm thickness. Beyond 5 g/m3, steady state total nitrogen removal decreased. In addition, simulation results revealed that the thicker biofilm clearly showed a more linear correlation between the increase in bulk oxygen concentration and the increase in the steady state total nitrogen removal within a range of bulk oxygen concentrations. The results showed that RBC performance could be controlled by several process options: the number of reactors in series, initial biomass fraction, the bulk oxygen concentration and the maximum biofilm thickness. The mathematical modeling results for the HFMBR and RBC have shown that both have potential as carriers for nitritation: anammox-coupled biofilms targeted at the removal of nitrogen in the wastewater. / Master of Science
23

Dynamique saisonnière des communautés nitrifiantes dans un petit lac oligotrophe

Massé, Stéphanie 01 1900 (has links)
Depuis la découverte d’archées capables d’oxyder l’ammoniac en milieu aérobie, de nombreuses études ont mesuré en simultané les taux de nitrification et la diversité des organismes oxydant l’ammoniac dans la colonne d’eau des milieux marins. Malgré l’importance globale des lacs d’eau douce, beaucoup moins d’études ont fait la même chose dans ces milieux. Dans cette étude, nous avons évalué l’importance de la nitrification et caractérisé la communauté microbienne responsable de la première étape limitante de la nitrification dans un lac tempéré durant une année entière. L’utilisation de traceur isotopique 15NH4 nous a permis de mesurer des taux d’oxydation d’ammoniac à deux profondeurs dans la zone photique tout au long de l’année. Les taux d’oxydation d’ammoniac varient de non détectable à 333 nmol L-1 j-1 avec un pic d’activité sous la glace. De toutes les variables environnementales mesurées, la concentration d’ammonium dans la colonne d’eau semble avoir le plus grand contrôle sur les taux d’oxydation d’ammoniac. Nous avons détecté la présence d’archées (AOA) et de bactéries oxydante d’ammoniac (BOA) à l’aide de tests par réaction en chaîne de la polymérase (PCR) ciblant une partie du gène ammoniac monoxygénase (amoA). Les AOA et les BOA ont été détectées dans la zone photique du lac, cependant seules les AOA étaient omniprésentes durant l’année. Le séquençage du gène amoA des archées révèle que la majorité des AOA dans le lac sont membres du groupe phylogénétique Nitrosotalea (également appelé SAGMGC-1 ou groupe I.1a associé), ce qui confirme la pertinence écologique de ce groupe dans les eaux douces oligotrophes. Globalement, nos résultats indiquent l’hiver comme étant un moment propice pour l’oxydation de l’ammoniac dans les lacs tempérés. Cette étude fournit un point de référence pour la compréhension du processus d’oxydation de l’ammoniac dans les petits lacs oligotrophes. / Since the discovery that some archaea are able to oxidize ammonia aerobically, several studies have focused on measuring nitrification rates and identifying the diversity of planktonic ammonia oxidizers in marine systems. Despite the global importance of freshwater lakes, far fewer studies have done the same in these ecosystems. Here we investigated the importance of nitrification and characterize the microbial community catalyzing the first rate-limiting step of nitrification over an annual cycle in a temperate lake. The measurements of ammonia oxidation rates, using the 15NH4+ isotope tracer method, at two depths in the photic zone show that this process occurred throughout the entire year in the lake. Rates of ammonia oxidation ranged from undetectable to 333 nmol L-1 d-1 with a peak of activity during winter. Off all environmental variables measured, ammonium concentrations in the water-column seem to have the strongest effect on the magnitude of ammonia oxidation rates. We detected the presence of ammonia-oxidizing archaea (AOA) and bacteria (AOB) using polymerase chain reaction (PCR) assays targeting part of the ammonia monooxygenase (amoA) gene. Both AOA and AOB were detected in the photic zone of the lake, although only AOA were omnipresent over the year. The sequencing of archaeal amoA genes reveals that most of the AOA in the lake are members of the Nitrosotalea cluster (also referred as SAGMGC-1 or group I.1a associated), which confirms the ecological relevance of this cluster in oligotrophic freshwaters. Altogether, our results indicate that winter may be a critical time for ammonia oxidation in temperate lakes and provide a baseline for the understanding of ammonia oxidation in small oligotrophic lakes.
24

<b>Influence of Metal Speciation and Support Properties for Ammonia Oxidation and Other Automotive Exhaust Catalytic Applications</b>

Brandon Kyle Bolton (18116749) 07 March 2024 (has links)
<p dir="ltr">Metal speciation and structure can be influenced by the deposition method used during synthesis, interactions with the support, and by post-deposition treatments and reaction conditions experienced during its lifetime of carrying out a catalytic reaction. Supported metal particles of different size contain different surface structures and coordination environments, which may not only influence reaction rates but also the interconversion between agglomerated metallic domains and dispersed metal atom or ion sites. Here, we address the influence of post-deposition treatments and support properties on the structural interconversion of Pd and Cu on aluminosilicate chabazite (CHA) zeolites, Pt on gamma-alumina (γ-Al2O3), and Pd on amorphous oxides (γ-Al2O3, La-doped Al2O3, ΘΔ-Al2O3). The fundamental insights from these studies can be used to design catalysts used widely in automotive exhaust aftertreatment systems, including Pd-exchanged zeolites for passive NOx (x = 1,2) adsorbers (PNA), Cu-exchanged zeolites for NOx (x = 1,2) selective catalytic reduction (SCR), Pt/Al2O3 for NH3 oxidation, and Pd/oxides for three-way catalysts (TWC). Incipient wetness impregnation (IWI) and colloidal methods were used to prepare Pd nanoparticles deposited on CHA zeolites with distinct Pd nanoparticle sizes and distributions. These Pd-CHA samples were used to investigate the effects of Pd particle size distribution on structural interconversion between ion-exchanged Pd and agglomerated Pd domains under realistic operating conditions. Smaller Pd nanoparticles had larger fractions of agglomerated Pd that converted to ion-exchanged Pd2+ sites at fixed air treatment temperatures (598–973 K) and H2O pressures (2–6 kPa H2O), consistent with thermodynamic predictions from DFT calculations. Furthermore, the addition of H2O during air treatment of different Pd nanoparticles (2–14 nm) inhibited the formation of ion-exchanged Pd2+ (thermodynamics), but not the rate of redispersion (kinetics). This demonstrates that, regardless of Pd nanoparticle size, water vapor in automotive exhaust streams facilitate metal sintering in PNA applications. Aqueous-phase exchange of Cu on CHA zeolites with varying support properties (i.e., number of paired Al sites in the 6 membered ring) were used to prepare materials with distinct types and numbers of extraframework Cu species (Cu2+, CuOH+). These Cu-CHA materials were used to analyze Cu structural changes before and after exposure to hydrothermal aging conditions. In the absence of H2O, some Cu2+ sites condense to form binuclear Ox-bridged Cu species that can be reduced with H2 to form Cu-hydride sites and reject H2O, leading to a sub-stoichiometric H2 consumption (H2/Cu < 0.5). In the presence of H2O, all nominally isolated Cu2+ species convert to [CuOH]+ structures, which can subsequently be reduced by H2 to form a Cu-hydride and reject H2O, leading to stoichiometric H2 consumption (H2/Cu ~ 0.5). Furthermore, the presence of H2O led to reduction features in H2 temperature programmed reduction (TPR) profiles that were similar among Cu-CHA materials, regardless of the initial Cu2+ speciation, further supporting the proposal that all nominally isolated Cu2+ sites convert to a similar [CuOH]+ motif. This demonstrates how water influences Cu speciation on CHA materials of varying origin or treatment history, aiding in quantifying SCR-active isolated Cu ions and SCR-inactive Cu species (e.g., CuO, CuAl2O4). Pt supported on γ-Al2O3 were prepared with different average Pt particle sizes (2–13 nm) by increasing the temperature of post-deposition air treatment (523–873 K). This suite of materials was interrogated to isolate the effects of Pt particle size on NH3 oxidation rates and selectivities during conditions relevant to NH3 slip applications in diesel exhaust aftertreatment. For all Pt particle sizes, NH3 oxidation rates displayed a hysteresis with temperature, with high rates measured during temperature decreases than during temperature increases. Smaller Pt particles (2 nm) had lower rates (per surface Pt, quantified by CO chemisorption) than larger Pt particles (13 nm), signifying that NH3 oxidation is a structure-sensitive reaction. Furthermore, surfaces of Pt particles restructure under NH3 oxidation reaction conditions, influencing effective Pt oxidation states, surface structures (numbers and types of exposed Pt sites), and surface coverages of intermediates leading to the observed hysteresis in rate. These findings demonstrate that Pt particles undergo dynamic structural changes during reaction, influencing their ability to convert NH3 to environmentally benign products in NH3 slip applications. The influence of treatment conditions, support properties, and initial Pd particle size and distribution on the kinetics of nanoparticle sintering were investigated to identify which material properties allow maintaining high dispersion to maximize metal utilization for three way catalysts (TWC) during the conversion of regulated pollutants (CO, hydrocarbons, NOx). Pd was deposited by IWI methods to generate polydiserse particle size distributions, and using colloidal Pd nanoparticle solutions to generate monodisperse size distributions, onto various supports (γ-Al2O3, La-doped Al2O3, ΘΔ-Al2O3) and subjected to aging under oxidative and reductive conditions relevant for TWC operation. The average Pd particle size for all materials increased with treatment time under both reductive and oxidative environments. For samples prepared with IWI (i.e., log normal distribution of Pd particle sizes), reductive aging treatments led to higher sintering rates than oxidative treatments. In contrast, for samples prepared using colloidal Pd solutions (i.e., normal distribution of Pd particle sizes), oxidative aging treatments led to higher sintering rates than reduction treatments. Furthermore, after the same treatment condition and time, samples prepared with IWI resulted in higher average Pd particle sizes. These results indicate that more monodisperse initial Pd particle size distributions lead to lower sintering rates, providing guidance to design of supported metal TWCs with improved metal utilization during their lifetimes. Here, the combination of synthesis approaches to prepare a suite of model (e.g., powder) supported metal catalysts of varying structure and composition, interrogated using site and structural characterizations and steady-state and transient kinetic measurements, along with predictions from theoretical calculations, enabled unraveling the influence of material properties and gas environments that affect metal speciation, structure, and oxidation state in real-world aftertreatment systems that use more complex catalytic architectures (e.g., layered washcoats) and reactor designs (e.g., monoliths). This approach provides insights into the fundamental thermodynamic and kinetic factors influencing metal restructuring and interconversion under realistic conditions encountered in automotive exhaust aftertreatment applications, and the kinetic and mechanistic factors that underlie complex phenomena (e.g., reaction rate hysteresis) from data measured in the absence of hydrodynamic artifacts. The overall approach used in this work enabled development of synthesis-structure-function relationships on various metal supported catalysts for automotive exhaust aftertreatment applications, which can provide guidance for material design and treatment strategies to form and retain desired metal structures throughout the material lifetime, including synthesis, reaction, and regeneration treatments.</p>
25

Comportamiento de los catalizadores de Pt-Rh y de los sistemas recuperadores utilizados en plantas de ácido nítrico

Tomás Alonso, Francisca 18 September 1990 (has links)
There are three major problems affecting efficiency in the catalytic oxidation of ammonia for obtaining nitric acid in an industrial plant: the limited life of gauzes, the low efficiency of the catalyst after a few months of operation, and finally, the necessity of recovering as much quantity of precious metals as possible. The first point to study in order to control the process and extend the useful life of the catalyst should be the correct characterization of the deactivated system. Therefore, this research is a systematic study about the performance of the catalytic recovering systems in nitric acid plants for all industrial pressures. In addition, it intends to cover the need of updating the knowledge in this field. The results obtained in this study with the support of SEM, EDX, XPS and AAS techniques, allow us to reach the following conclusions: The extremely critical conditions in which the activation pretreatment takes place cause important structural variations in the material surface. Beyond that, significant PtO2 losses and subsequent enrichment in RhO2 occur in a campaign in a high pressure plant, and mean while a continuous surface reconstruction is taking place. In contrast, an enrichment in Rh0 occurs in a lower pressure plant. In all situations, the deactivation is associated to a decrease in the Platinum content, more active than Rhodium. The getter mechanism in the recovering gauzes is directional and consists in the absorption of PtO2 (or Pt0) on the surface of the Palladium-based wires. Next, the PtO2 reduces itself to Pt0 and forms the Pt-Pd alloy. The part of volatile Platinum and Palladium oxides which gest through the recovering pack, as well as the particles of Rh2O3 carried away mechanically, settle in the heat exchangers line and in the Platinum filter of the high pressure plant. The most part of impurities are associated to Fe, Ni, Cr, Cu and Mn,probably forming oxides. Finally, from the comparative analysis made between the diversity of plants studied, we can conclude that their different operating conditions have an extremely important influence in the performance of the catalytic and recovering systems used.

Page generated in 0.1045 seconds