• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 21
  • 16
  • 2
  • 1
  • 1
  • Tagged with
  • 68
  • 28
  • 16
  • 11
  • 9
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Grön ammoniak i Norra Sverige : Konceptstudie kring förutsättningar för grön ammoniakproduktion i Norra Sverige / Green ammonia in northern Sweden

Hägglund, Fredrik January 2022 (has links)
Europeiska Unionen presenterade den 8 juni 2020 sin vätgasstrategi i syfte för att minska koldioxidutsläppen. Det unionen vill uppnå med sin vätgasstrategi är att uttnytja konceptet Power-to-X där elektricitet omvandlas till energi. Om elektricitetkällan kommer från förnyelsebar energi kommer grön vätgas produceras. Problemet med vätgas idag är lagring, transport och hanteringstrukturen för ämnet men vätgas kan lagras i flertal applikationer. En av de mest lovande lagringsalternativen är ammoniak som bildas när vätgas med kvävgas reagerar med varandra via ammoniaksyntes. Eftersom vätgasproduktionen idag använder fossila bränslen kommer även dess applikation göra det, men med grön vätgas kommer dess applikation även att bli grön. Idag står ammoniakproduktion för 2 % av fossilbränsleanvändning globalt och frigör mer än 400 miljoner ton CO2 årligen. Dessa utsläpp skulle försvinna om produktionen av ammoniak gjordes med Power-to-X konceptet. Syftet med detta examensarbete är att undersöka förutsättningarna ur ett ekonomiskt, tekniskt och säkerhetsmässigt hållbart Power-to-X koncept i form av en Grön Ammoniakanläggning i Norra Sverige. Det innebär att processer för en ammoniakproduktion skall analyseras ur ett teknisk synvinkel där fokus på funktion mot grön ammoniak är i fokus. Den ekonomiska synvinkeln innebär vad kapitalkostnaden (CAPEX) blir för anläggningen samt driftkostnaden (OPEX) som processen får. Arbetet innehåller först en analys av de processer som krävs för att kunna producera ammoniak. Därefter en analys över möjliga tekniker för dessa processer, hur väl de fungerar mot grön ammoniak och vilka antaganden som är i detta arbete. Anläggningen skulle vara storskalig vilket innebär en produktion på 500 ton NH3 $/dag. Det är även antaget en kontinuerlig eltillförsel samt att elnät redan är tillgänglig. Detta gav att vätgasproduktionen gjordes med en PEM-elektrolys, där kvävgas fås från kryogen destillation och ammoniak produceras med HB-processen. Resultatet visades att anläggningens CAPEX och OPEX blev 2 820 MSEK respektive 1 272 MSEK/år. Den dominerande faktorn för kapitalkostnaden var för vätgasproduktion som utgjorde 60 % av CAPEX. Den höga kostnaden för PEM-elektrolys är dels för att utvecklingen av processen inte är fullbordad, där utvecklingen för tekniken skulle kunna ge en stor kostnadsreducering. Det elbehov som anläggningen kräver är 1,6 TWh och och utgör en påverkan på OPEX är 55,4 %. Den process som kräver mest energi är vätgasproduktionen vilket omfattar 94 % av hela anläggningens totala elbehov. En stor anledning till de dyra driftkostnaderna är elpriset. I detta arbete valdes elpriset till ett medelvärde för SE1 i Sverige under en 10 års period. I ett verkligt scenario hade vätgasproduktionen kunnat optimeras för uppnå billigare drift.
42

Modification of natural zeolite by salt to treat ammonia pollution in groundwater

Nguyen, Xuan Huan, Nguyen, Thi Tham, Luu, Quang Minh 21 February 2019 (has links)
Treating ammonium pollution in ground water by natural zeolite after being modificated to the Naform (Z-Na) is the new way of research that scientists interested in. The experiment results showed that, at pH 6, the efficient of treating ammonium in ground water is the highest. The efficient of treating increase rapidly in the first 5 minutes and remain stable after that. Higher concentration of the Z-Na will increase the treating coefficient of the process. With a water sample that has CNNH4+= 27 mg/L at first, using CZ-Na=13g/L and after 5 minutes, the concentration of ammonium in water was declined to 1mg/L, passed the Vietnamese standard for ground water (QCVN 09:2015- MT/BTNMT). The treating coefficient is 96.30%, the adsorption capacity is 2.07 mg N-NH4 +/1g ZNa. The loaded Z-Na was regenerated using 2g/L NaOH solution, the ammonium recovery ratio exceeded 92%. This means the reuse of Z-Na for ammonium adsorption is very high. The results of the experiment with groundwater samples in Phu Xuyen district, Ha Noi have a concentration of 53 mg/L. In conclusion, Z-Na material is perfectly fit for purpose of treating ammonium in ground water because of it low price, safety, easily to imitate and high efficiency. / Xử lí ô nhiễm amoni trong nước ngầm bằng vật liệu zeolite tự nhiên được biến tính bằng muối ăn (Z-Na) là một hướng nghiên cứu mới, được các nhà khoa học rất quan tâm. Kết quả thí nghiệm cho thấy, tại pH 6 thì hiệu quả xử lí amoni trong nước là tốt nhất. Hiệu quả xử lí amoni trong nước tăng rất nhanh trong 5 phút đầu tiên xử lý. Càng tăng nồng độ Z-Na thì hiệu quả xử lí amoni càng cao. Với dung dịch nước ban đầu có nồng độ amoni tính theo nitơ (N-NH4 +) nhỏ hơn 27 mg/L và nồng độ vật liệu Z-Na sử dụng là 13g/L thì nước sau xử lí có nồng độ nhỏ hơn 1mg N-NH4 +/L, đạt QCVN 09-MT:2015/BTNMT, hiệu suất xử lí đạt 96,30%, dung lượng hấp phụ cực đại đạt 2,07 mg NNH4 +/1g Z-Na. Vật liệu Z-Na sau khi xử lý được nghiên cứu giải hấp bằng dung dịch NaOH với nồng độ 2g/L cho thấy hiệu quả giải hấp đạt 92% lượng amoni được hấp phụ. Điều này chứng tỏ khả năng tái sử dụng của vật liệu Z-Na cho hấp phụ amoni là khá cao. Kết quả nghiên cứu đã được thử nghiệm xử lý với mẫu nước ngầm tại huyện Phú Xuyên, Hà Nội có nồng độ N-NH4 + là 53 mg/L. Vì vậy, vật liệu Z-Na hoàn toàn có thể ứng dụng vào thực tiễn để xử lý amoni trong nước ngầm rất an toàn, dễ thực hiện và hiệu quả cao.
43

Utfasning av miljöskadliga köldmedier i kylsystem : Utfasning av miljöskadliga köldmedier i kylsystemet på Stora Ensos pappersbruk i Kvarnsveden som innefattas av nya köldmedieförordningen SFS 2016:1128.

Nygren, Julia January 2018 (has links)
No description available.
44

Untersuchungen zur Ammoniakmodifikation und einer mechanischen Verdichtung von Rotbuchen- und Fichtenholz

Hackenberg, Herwig 04 December 2023 (has links)
Gegenstand der vorliegenden Arbeit war das Einwirken von gasförmigem Ammoniak auf Rotbuchenholz (Fagus sylvatica L.) und Fichtenholz (Picea abies Karst.). Das Holz wurde unter isothermen Bedingungen bei verschiedenen Druckstufen von Normal-druck bis zu annähernd Sattdampfdruck des Ammoniakgases modifiziert. Die Unter-suchungen sind in materialseitige und verfahrensseitige Versuche einzuordnen. Ma-terialseitig lag der Fokus auf holzchemischen und holzphysikalischen Veränderun-gen. Im Rahmen der holzphysikalischen Versuche wurden auch mechanische Ver-dichtungen durchgeführt und das Fixierungsverhalten betrachtet. Bei den verfah-rensseitigen Untersuchungen wurden die Quellung, die Temperatur und die Masse des Holzes während der Ammoniakbegasung beobachtet. Es wurde herausgefunden, dass Ammoniak zu einem starken Temperaturanstieg des Holzes am Beginn eines Begasungsvorgangs führt. Die Masse und die Quellmaße des Holzes steigen hingegen kontinuierlich im Versuchsverlauf an. In der tangentialen Holzrichtung quillt das Holz stärker als es für die Quellung durch Wasser bekannt ist. Von den Zellwandbestandteilen wird die Hemicellulose infolge der Ammoniakbe-handlung stark degradiert. Das Lignin und die Cellulose sind hingegen chemisch sehr stabil gegenüber der Behandlung. Eine Besonderheit bei der Cellulose ist, dass die kristallinen Bereiche durch den Ammoniak ab einem bestimmten Druck gequollen werden. Die Cellulose ändert dadurch ihre kristalline Struktur von Cellulose I zu Cel-lulose III. Der Ammoniak führt analog zur Umwandlung der kristallinen Cellulose zu einer Selbstverdichtung des Holzes, was eine Rohdichteerhöhung von bis zu 30 % bewir-ken kann. Infolgedessen wird die Rohdichteerhöhung, die durch die mechanische Verdichtung hervorgerufen wird, verstärkt. Die Quellmaße steigen durch die Ammo-niakbehandlung stark an, jedoch werden die verdichteten Abmessungen gegenüber einer Wasserquellung sehr gut fixiert. Die dauerhafte Rückverformung hin zu der ursprünglichen Abmessung ist somit sehr gering. Die Holzarten Rotbuche und Fichte verhalten sich gegenüber dem Ammoniak wei-testgehend analog. Die Imprägnierung, Verdichtung und Fixierung sind trotz großer chemischer und anatomischer Unterschiede bei beiden Holzarten möglich. / The subject of the present study was the effect of gaseous ammonia treatment on European beech wood (Fagus sylvatica L.) and Norway spruce wood (Picea abies Karst.). The wood was modified under isothermal conditions at different pressure levels from normal pressure to almost saturated vapour pressure of the ammonia gas. The investigations can be divided into material related and process related ex-periments. On the material side, the focus was on wood-chemical and wood-physical changes. As part of the wood-physical experiments, also mechanical densifications were carried out and the fixation behaviour was examined. In the process-related investigations, the swelling, temperature and mass of the wood were observed dur-ing ammonia treatment. It was found that ammonia leads to a strong temperature increase of the wood at the beginning of a modification process. The mass and swelling dimensions of the wood, however, increase continuously during the course of the experiment. In the tangen-tial direction of the wood, the wood swells more than is known for swelling caused by water. The cell wall component hemicellulose is strongly degraded as a result of the ammonia treatment. The lignin and cellulose, on the other hand, are chemically very stable to the treatment. A special aspect of cellulose is that the crystalline areas are swollen by the ammonia when a certain pressure is reached. The cellulose thus changes its crystalline structure from cellulose I to cellulose III. The ammonia leads to a self-densification of the wood in analogy to the transformation of the crystalline cellulose, which can cause an increase in density of up to 30 %. As a result, the in-crease in density caused by mechanical compression is intensified. The swelling di-mensions increase strongly due to the ammonia treatment, but the compacted di-mensions are very well fixed compared to water swelling. The permanent defor-mation back to the original dimensions is therefore very low. The wood species European beech and Norway spruce behave in a similar way to-wards ammonia. Impregnation, compaction and fixation are possible with both types of wood despite major chemical and anatomical differences.
45

Absorption av koldioxid i ammoniaklösning / Absorption of carbon dioxide in ammonia solution

Andersson, Filippa, Bengtsson, Sofia, Lagergren, Jonas, Vikström, Madeleine January 2021 (has links)
Gasformig koldioxid kan absorberas i en ammoniaklösning och bilda salt. De möjliga produkterna är ammoniumvätekarbonat (NH4HCO3), ammoniumkarbamat (NH2COONH4) och ammoniumkarbonat ((NH4)2CO3). Ammoniak är gasformigt i rumstemperatur. För att förhindra avdunstning av ammoniak undersöktes det i den här rapporten om nedkylning av reaktionslösningen eller ett oljelager ovanför skulle kunna förhindra detta och därmed tillåta saltbildning i lösningen. Dessutom skulle absorptionen genomföras utan både oljelager och nedkylt förhållande för att bestämma vad som var mest effektivt för att ge ett så högt utbyte som möjligt. För bestämning av de bildade salternas sammansättning användes XRD som analysmetod.  Resultatet från experimentet visade att salterna bildades i gasfasen och inget salt erhölls från vätskefasen. Orsaken till det är inte fastslagen, men tros bero på parametrar som salternas löslighet, lösningens pH, flödeshastighet på koldioxiden som gynnar ammoniakens avdunstning samt temperaturen. Utbytet från de olika försöksuppställningarna blev lågt i samtliga experiment, som högst erhölls relativt utbyte på 1,5%. Experimentet som gav högst relativt utbyte var försök vid 15% ammoniakkoncentration och koldioxidflöde på 181 ml CO2/min. Vid detta försök gjordes inga åtgärder för att förhindra ammoniakavdunstning från lösningen. Av de proverna som analyserades med XRD erhölls endast den önskade produkten med säkerhet i ett av proverna (isbad, 15 % NH3, 181 ml CO2/min). För att bestämma optimala reaktionsbetingelser krävs vidare studier.
46

Experimental and modelling evaluation of an ammonia-fuelled microchannel reactor for hydrogen generation / Steven Chiuta

Chiuta, Steven January 2015 (has links)
In this thesis, ammonia (NH3) decomposition was assessed as a fuel processing technology for producing on-demand hydrogen (H2) for portable and distributed fuel cell applications. This study was motivated by the present lack of infrastructure to generate H2 for proton exchange membrane (PEM) fuel cells. An overview of past and recent worldwide research activities in the development of reactor technologies for portable and distributed hydrogen generation via NH3 decomposition was presented in Chapter 2. The objective was to uncover the principal challenges relating to the state-of-the-art in reactor technology and obtain a basis for future improvements. Several important aspects such as reactor design, operability, power generation capacity and efficiency (conversion and energy) were appraised for innovative reactor technologies vis-à-vis microreactors, monolithic reactors, membrane reactors, and electrochemical reactors (electrolyzers). It was observed that substantial research effort is required to progress the innovative reactors to commercialization on a wide basis. The use of integrated experimental-mathematical modelling approach (useful in attaining accurately optimized designs) was notably non-existent for all reactors throughout the surveyed openliterature. Microchannel reactors were however identified as a transformative reactor technology for producing on-demand H2 for PEM cell applications. Against this background, miniaturized H2 production in a stand-alone ammonia-fuelled microchannel reactor (reformer) washcoated with a commercial Ni-Pt/Al2O3 catalyst (ActiSorb® O6) was demonstrated successfully in Chapter 3. The reformer performance was evaluated by investigating the effect of reaction temperature (450–700 °C) and gas-hourly-space-velocity (6 520–32 600 Nml gcat -1 h-1) on key performance parameters including NH3 conversion, residual NH3 concentration, H2 production rate, and pressure drop. Particular attention was devoted to defining operating conditions that minimised residual NH3 in reformate gas, while producing H2 at a satisfactory rate. The reformer operated in a daily start-up and shut-down (DSS)-like mode for a total 750 h comprising of 125 cycles, all to mimic frequent intermittent operation envisaged for fuel cell systems. The reformer exhibited remarkable operation demonstrating 98.7% NH3 conversion at 32 600 Nml gcat -1 h-1 and 700 °C to generate an estimated fuel cell power output of 5.7 We and power density of 16 kWe L-1 (based on effective reactor volume). At the same time, reformer operation yielded low pressure drop (<10 Pa mm-1) for all conditions considered. Overall, the microchannel reformer performed sufficiently exceptional to warrant serious consideration in supplying H2 to low-power fuel cell systems. In Chapter 4, hydrogen production from the Ni-Pt-washcoated ammonia-fuelled microchannel reactor was mathematically simulated in a three-dimensional (3D) CFD model implemented via Comsol Multiphysics™. The objective was to obtain an understanding of reaction-coupled transport phenomena as well as a fundamental explanation of the observed microchannel reactor performance. The transport processes and reactor performance were elucidated in terms of velocity, temperature, and species concentration distributions, as well as local reaction rate and NH3 conversion profiles. The baseline case was first investigated to comprehend the behavior of the microchannel reactor, then microstructural design and operating parameters were methodically altered around the baseline conditions to explore the optimum values (case-study optimization). The modelling results revealed that an optimum NH3 space velocity (GHSV) of 65.2 Nl gcat -1 h-1 yields 99.1% NH3 conversion and a power density of 32 kWe L-1 at the highest operating temperature of 973 K. It was also shown that a 40-μm-thick porous washcoat was most desirable at these conditions. Finally, a low channel hydraulic diameter (225 μm) was observed to contribute to high NH3 conversion. Most importantly, mass transport limitations in the porouswashcoat and gas-phase were found to be negligible as depicted by the Damköhler and Fourier numbers, respectively. The experimental microchannel reactor produced 98.2% NH3 conversion and a power density of 30.8 kWe L-1 when tested at the optimum operating conditions established by the model. Good agreement with experimental data was observed, so the integrated experimental-modeling approach used here may well provide an incisive step toward the efficient design of ammonia-fuelled microchannel reformers. In Chapter 5, the prospect of producing H2 via ammonia (NH3) decomposition was evaluated in an experimental stand-alone microchannel reactor wash-coated with a commercial Cs-promoted Ru/Al2O3 catalyst (ACTA Hypermec 10010). The reactor performance was investigated under atmospheric pressure as a function of reaction temperature (723–873 K) and gas-hourly-space-velocity (65.2–326.1 Nl gcat -1 h-1). Ammonia conversion of 99.8% was demonstrated at 326.1 Nl gcat -1 h-1 and 873 K. The H2 produced at this operating condition was sufficient to yield an estimated fuel cell power output of 60 We and power density of 164 kWe L-1. Overall, the Ru-based microchannel reactor outperformed other NH3 microstructured reformers reported in literature including the Ni-based system used in Chapter 3. Furthermore, the microchannel reactor showed a superior performance against a fixed-bed tubular microreactor with the same Ru-based catalyst. Overall, the high H2 throughput exhibited may promote widespread use of the Ru-based micro-reaction system in high-power applications. Four peer-reviewed journal publications and six conference publications resulted from this work. / PhD (Chemical Engineering), North-West University, Potchefstroom Campus, 2015
47

Experimental and modelling evaluation of an ammonia-fuelled microchannel reactor for hydrogen generation / Steven Chiuta

Chiuta, Steven January 2015 (has links)
In this thesis, ammonia (NH3) decomposition was assessed as a fuel processing technology for producing on-demand hydrogen (H2) for portable and distributed fuel cell applications. This study was motivated by the present lack of infrastructure to generate H2 for proton exchange membrane (PEM) fuel cells. An overview of past and recent worldwide research activities in the development of reactor technologies for portable and distributed hydrogen generation via NH3 decomposition was presented in Chapter 2. The objective was to uncover the principal challenges relating to the state-of-the-art in reactor technology and obtain a basis for future improvements. Several important aspects such as reactor design, operability, power generation capacity and efficiency (conversion and energy) were appraised for innovative reactor technologies vis-à-vis microreactors, monolithic reactors, membrane reactors, and electrochemical reactors (electrolyzers). It was observed that substantial research effort is required to progress the innovative reactors to commercialization on a wide basis. The use of integrated experimental-mathematical modelling approach (useful in attaining accurately optimized designs) was notably non-existent for all reactors throughout the surveyed openliterature. Microchannel reactors were however identified as a transformative reactor technology for producing on-demand H2 for PEM cell applications. Against this background, miniaturized H2 production in a stand-alone ammonia-fuelled microchannel reactor (reformer) washcoated with a commercial Ni-Pt/Al2O3 catalyst (ActiSorb® O6) was demonstrated successfully in Chapter 3. The reformer performance was evaluated by investigating the effect of reaction temperature (450–700 °C) and gas-hourly-space-velocity (6 520–32 600 Nml gcat -1 h-1) on key performance parameters including NH3 conversion, residual NH3 concentration, H2 production rate, and pressure drop. Particular attention was devoted to defining operating conditions that minimised residual NH3 in reformate gas, while producing H2 at a satisfactory rate. The reformer operated in a daily start-up and shut-down (DSS)-like mode for a total 750 h comprising of 125 cycles, all to mimic frequent intermittent operation envisaged for fuel cell systems. The reformer exhibited remarkable operation demonstrating 98.7% NH3 conversion at 32 600 Nml gcat -1 h-1 and 700 °C to generate an estimated fuel cell power output of 5.7 We and power density of 16 kWe L-1 (based on effective reactor volume). At the same time, reformer operation yielded low pressure drop (<10 Pa mm-1) for all conditions considered. Overall, the microchannel reformer performed sufficiently exceptional to warrant serious consideration in supplying H2 to low-power fuel cell systems. In Chapter 4, hydrogen production from the Ni-Pt-washcoated ammonia-fuelled microchannel reactor was mathematically simulated in a three-dimensional (3D) CFD model implemented via Comsol Multiphysics™. The objective was to obtain an understanding of reaction-coupled transport phenomena as well as a fundamental explanation of the observed microchannel reactor performance. The transport processes and reactor performance were elucidated in terms of velocity, temperature, and species concentration distributions, as well as local reaction rate and NH3 conversion profiles. The baseline case was first investigated to comprehend the behavior of the microchannel reactor, then microstructural design and operating parameters were methodically altered around the baseline conditions to explore the optimum values (case-study optimization). The modelling results revealed that an optimum NH3 space velocity (GHSV) of 65.2 Nl gcat -1 h-1 yields 99.1% NH3 conversion and a power density of 32 kWe L-1 at the highest operating temperature of 973 K. It was also shown that a 40-μm-thick porous washcoat was most desirable at these conditions. Finally, a low channel hydraulic diameter (225 μm) was observed to contribute to high NH3 conversion. Most importantly, mass transport limitations in the porouswashcoat and gas-phase were found to be negligible as depicted by the Damköhler and Fourier numbers, respectively. The experimental microchannel reactor produced 98.2% NH3 conversion and a power density of 30.8 kWe L-1 when tested at the optimum operating conditions established by the model. Good agreement with experimental data was observed, so the integrated experimental-modeling approach used here may well provide an incisive step toward the efficient design of ammonia-fuelled microchannel reformers. In Chapter 5, the prospect of producing H2 via ammonia (NH3) decomposition was evaluated in an experimental stand-alone microchannel reactor wash-coated with a commercial Cs-promoted Ru/Al2O3 catalyst (ACTA Hypermec 10010). The reactor performance was investigated under atmospheric pressure as a function of reaction temperature (723–873 K) and gas-hourly-space-velocity (65.2–326.1 Nl gcat -1 h-1). Ammonia conversion of 99.8% was demonstrated at 326.1 Nl gcat -1 h-1 and 873 K. The H2 produced at this operating condition was sufficient to yield an estimated fuel cell power output of 60 We and power density of 164 kWe L-1. Overall, the Ru-based microchannel reactor outperformed other NH3 microstructured reformers reported in literature including the Ni-based system used in Chapter 3. Furthermore, the microchannel reactor showed a superior performance against a fixed-bed tubular microreactor with the same Ru-based catalyst. Overall, the high H2 throughput exhibited may promote widespread use of the Ru-based micro-reaction system in high-power applications. Four peer-reviewed journal publications and six conference publications resulted from this work. / PhD (Chemical Engineering), North-West University, Potchefstroom Campus, 2015
48

Absorption of CO2 : - by Ammonia / Absorption of CO2 : - by Ammonia

Sjöstrand, Filip, Yazdi, Reza January 2009 (has links)
In this diploma work, the absorption of CO2 in different liquid solutions was studied by gas absorption in a randomly packed column. To characterize the absorption a few experiments with SO2 absorption were made.The report has resulted due to the large amounts of carbon dioxide released into the atmosphere, mainly from fossil-fired power plants. To reduce these emissions, carbon dioxide can be separated from flue gas by different techniques such as CO2 absorption with ammonia. The work consists of a theoretical and a laboratory part of measurements and calculations. In the experimental part a system of absorption and associated test equipment was constructed. Different liquid solutions of pure water, potassium carbonate solution and ammonia in various concentrations were used to catch carbon dioxide by countercurrent absorption. Also SO2 was absorbed in the potassium carbonate solution to determine the gas film constant. The absorption efficiency of CO2 ranged from a few percent in the experiment with water to up to 7% with potassium carbonate solution. The CO2 absorption of ammonia varied with concentration and gave a separation of between 12 and 94%. Ammonia tests were made at both 10 and 20 °C. In general, a higher CO2-capture at 20 °C was obtained as confirmed by theory. / I detta examensarbete har absorptionseffektivitet av CO2 hos olika vätskelösningar undersökts genom gasabsorption i en slumpmässigt packad kolonn. För att karakterisera absorptionen absorberades även SO2 i några experiment. Rapporten är utförd med anledning av de stora mängder koldioxid som släpps ut i atmosfären, främst från fossileldade kraftverk. För att minska dessa utsläpp kan koldioxiden avskiljas från rökgaserna genom olika tekniker t.ex. genom CO2-absorption med ammoniak. Arbetet består av en teoridel och en laborativ del med mätningar och beräkningar. I den experimentella delen konstruerades ett system med en absorptionskolonn och tillhörande mätutrustning. Olika vätskelösningar bestående av rent vatten, kaliumkarbonatlösning och ammoniak i olika koncentrationer användes till att ta upp koldioxid genom motströms absorption. Även SO2 absorberades i kaliumkarbonatlösning för att bestämma gasfilmkonstanten. Absorptionsgraden av CO2 varierade från några få procent i försöket med vatten upp till 7 % med kaliumkarbonatlösningen. CO2-absorptionen av ammoniak varierade med koncentrationen och gav en avskiljning på mellan 12 och 94 %. Ammoniakförsöken gjordes med både vid 10 och 20 °C. Generellt erhölls en bättre CO2-avskiljning vid 20°C, vilket bekräftas av teorin.
49

Absorption of CO<sub>2 </sub> : - by Ammonia / Absorption of CO<sub>2 </sub> : - by Ammonia

Sjöstrand, Filip, Yazdi, Reza January 2009 (has links)
<p>In this diploma work, the absorption of CO<sub>2 </sub>in different liquid solutions was studied by gas absorption in a randomly packed column. To characterize the absorption a few experiments with SO<sub>2</sub> absorption were made.The report has resulted due to the large amounts of carbon dioxide released into the atmosphere, mainly from fossil-fired power plants. To reduce these emissions, carbon dioxide can be separated from flue gas by different techniques such as CO<sub>2</sub> absorption with ammonia. The work consists of a theoretical and a laboratory part of measurements and calculations. In the experimental part a system of absorption and associated test equipment was constructed. Different liquid solutions of pure water, potassium carbonate solution and ammonia in various concentrations were used to catch carbon dioxide by countercurrent absorption. Also SO<sub>2</sub> was absorbed in the potassium carbonate solution to determine the gas film constant. The absorption efficiency of CO<sub>2</sub> ranged from a few percent in the experiment with water to up to 7% with potassium carbonate solution. The CO<sub>2</sub> absorption of ammonia varied with concentration and gave a separation of between 12 and 94%. Ammonia tests were made at both 10 and 20 °C. In general, a higher CO<sub>2</sub>-capture at 20 °C was obtained as confirmed by theory.</p> / <p>I detta examensarbete har absorptionseffektivitet av CO<sub>2</sub> hos olika vätskelösningar undersökts genom gasabsorption i en slumpmässigt packad kolonn. För att karakterisera absorptionen absorberades även SO<sub>2</sub> i några experiment.</p><p>Rapporten är utförd med anledning av de stora mängder koldioxid som släpps ut i atmosfären, främst från fossileldade kraftverk. För att minska dessa utsläpp kan koldioxiden avskiljas från rökgaserna genom olika tekniker t.ex. genom CO<sub>2</sub>-absorption med ammoniak.</p><p>Arbetet består av en teoridel och en laborativ del med mätningar och beräkningar. I den experimentella delen konstruerades ett system med en absorptionskolonn och tillhörande mätutrustning. Olika vätskelösningar bestående av rent vatten, kaliumkarbonatlösning och ammoniak i olika koncentrationer användes till att ta upp koldioxid genom motströms absorption. Även SO<sub>2</sub> absorberades i kaliumkarbonatlösning för att bestämma gasfilmkonstanten. Absorptionsgraden av CO<sub>2</sub> varierade från några få procent i försöket med vatten upp till 7 % med kaliumkarbonatlösningen. CO<sub>2</sub>-absorptionen av ammoniak varierade med koncentrationen och gav en avskiljning på mellan 12 och 94 %. Ammoniakförsöken gjordes med både vid 10 och 20 °C. Generellt erhölls en bättre CO<sub>2</sub>-avskiljning vid 20°C, vilket bekräftas av teorin.</p>
50

Analyse und Bewertung physikalisch-chemischer und stofflicher Parameter auf die Freisetzung von biogenen Gasen und luftgetragenen Partikeln aus Substraten bei der Haltung von Warmblutpferden in eingestreuten Einzelboxen / Analysis and evaluation of physical-chemical and material paramaters on the generation of biogene gases and airborne particles from bedding substrates of warmblood horses kept in single stalls

Fleming, Kathrin 06 November 2008 (has links)
No description available.

Page generated in 0.0359 seconds