• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Reduced-Order Model of a Chevron Plate Heat Exchanger for Rapid Thermal Management by Using Thermo-Chemical Energy Storage

Niedbalski, Nicholas 2012 August 1900 (has links)
The heat flux demands for electronics cooling applications are quickly approaching the limits of conventional thermal management systems. To meet the demand of next generation electronics, a means for rejecting high heat fluxes at low temperatures in a compact system is an urgent need. To answer this challenge, in this work a gasketed chevron plate heat exchanger in conjunction with a slurry consisting of highly endothermic solid ammonium carbamate and a heat transfer fluid. A reduced-order 1-dimensional model was developed and used to solve the coupled equations for heat, mass, and momentum transfer. The feasibility of this chosen design for satisfying the heat rejection load of 2kW was also explored in this study. Also, a decomposition reaction using acetic acid and sodium bicarbonate was conducted in a plate heat exchanger (to simulate a configuration similar to the ammonium carbamate reactions). This enabled the experimental validation of the numerical predictions for the momentum transfer correlations used in this study (which in turn, are closely tied to both the heat transfer correlations and chemical kinetics models). These experiments also reveal important parameters of interest that are required for the reactor design. A numerical model was developed in this study and applied for estimating the reactor size required for achieving a power rating of 2 kW. It was found that this goal could be achieved with a plate heat exchanger weighing less than 70 kg (~100 lbs) and occupying a volume of 29 L (which is roughly the size of a typical desktop printer). Investigation of the hydrodynamic phenomena using flow visualization studies showed that the flow patterns were similar to those described in previous studies. This justified the adaptation of empirical correlations involving two-phase multipliers that were developed for air-water two-phase flows. High-speed video confirmed the absence of heterogeneous flow patterns and the prevalence of bubbly flow with bubble sizes typically less than 0.5 mm, which justifies the use of homogenous flow based correlations for vigorous gas-producing reactions inside a plate heat exchanger. Absolute pressure measurements - performed for experimental validation studies - indicate a significant rise in back pressure that are observed to be several times greater than the theoretically estimated values of frictional and gravitational pressure losses. The predictions from the numerical model were found to be consistent with the experimental measurements, with an average absolute error of ~26%
2

The Use of Ammonium Carbamate as a High Specific Thermal Energy Density Material for Thermal Management of Low Grade Heat

Schmidt, Joel Edward 22 August 2011 (has links)
No description available.
3

CO2 Capture on Polymer-Silica Composites from Molecular Modeling to Pilot Scale

Willett, Erik Amos 23 May 2018 (has links)
No description available.

Page generated in 0.0698 seconds