• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Micro-fabricated super-hydrophobic substrate for amyloid fibers characterization

Ricco, Andrea 22 November 2018 (has links)
In recent years super-hydrophobic micro-patterned substrates (SHS) have been successfully used for the suspension of a few biological molecules, allowing the further characterization in a background-free environment by label-free techniques such as Raman spectroscopy, SEM and TEM in one device. This result is due to the combined action of laminar flow and shear stress exerted on the molecules contained in a drop that is spotted on top of the SHS and slowly evaporates. This new method is here proposed for the label-free formation and background-free characterization of amyloid fibers. Amyloids are insoluble aggregates formed by proteins that convert from a misfolded form into highly-organized β-sheet structures that could accumulate in different organs and compromise their normal physiological functions. Known amyloid-related diseases, named amyloidosis, are for instance Alzheimer, Parkinson, and type 2 diabetes. In classical crystallography, the study of the amyloid aggregates structure is often hampered by the laborious and time consuming sample preparation techniques. Therefore the need of a quick reproducible technique, has emerged. The amyloid fibers investigated in this work are derived from a lysozyme protein and a Tau-derived short peptide, both known to be related to two forms of amyloidosis. With this technique we demonstrate that threads of protein fibers are deposited on the substrate helped by the patterning of the SHS and its properties, and by characterizing them with Raman spectroscopy technique we revealed that they are anisotropic structures of amyloid nature. This type of sample preparation technique arises from the effect of the evaporation on the SHS, and opens up new possibilities for the formation of oriented fibers of amyloids and more in general, of proteins, ready for a substrate-free characterization, while classic crystallographic methods could have a limitation.
2

Contribution à l’étude de l’organisation et des propriétés mécaniques d’exopolymères de matrice de biofilms modèles / Contribution to the study of the organization and the mechanical properties of biofilms exopolymer matrix models

Lembré, Pierre 22 November 2012 (has links)
Les biofilms sont des édifices macromoléculaires qui résultent de l'adhérence de microorganismes à une surface. Ils sont constitués de cellules enchâssées dans un réseau d'exopolymères d'origine biologique qui forment une matrice extracellulaire. Les biofilms posent des problèmes technologiques et sanitaires dans de nombreux domaines, aussi bien agroalimentaire, médical, ou industriel. Comprendre les mécanismes de formation de ces structures est donc un enjeu majeur. Malgré une grande diversité de la structure des biofilms, de grands principes semblent en régir la composition. Ainsi, la présence de polysaccharides comme l'alginate et la cellulose joue un rôle majeur dans leur formation et dans la définition de leurs propriétés mécaniques. Si la présence de polymères protéiques comme les fibres amyloïdes semble avoir un caractère universel au sein des biofilms, leur rôle dans la formation de la matrice et dans ses propriétés mécaniques restait à définir. Lors de cette étude, nous avons caractérisé la structure et la composition de trois biofilms monobactériens issus de trois espèces différentes P. aeruginosa NK 125502, S. enterica CIP 58.58 et S. epidermidis CIP 53.124. Nous avons décrit la formation de fibres amyloïdes par différents peptides issus de protéines bactériennes impliquées dans la formation de biofilm et montré par différentes techniques qu'ils sont capables de former des fibres amyloïdes. Nous avons notamment identifié un peptide amyloïde, suggérant la présence de ce type de fibre au sein des biofilms de Staphylococcus, mais aussi plus généralement dans les biofilms des espèces exprimant une protéine de type Bap (Biofilm associated protein). Enfin, nous avons analysé les propriétés mécaniques de différentes matrices synthétiques à base d'alginate et de méthyl-cellulose, en présence et en absence de protéines et de peptides amyloïdes afin de mieux comprendre l'apport qu'a ce type de fibre sur les propriétés de ces structures. Ainsi, les fibres amyloïdes modifient les propriétés mécaniques des gels synthétiques, permettant d'augmenter la déformation sous contrainte. En conclusion, ce travail apporte de nouveaux éléments pour la compréhension du rôle des fibres amyloïdes dans le renforcement de la matrice du biofilm. La capacité à former des fibres amyloïdes par un peptide issu de la protéine Bap de S. epidermidis suggère que cette propriété est plus largement présente au sein de cette famille de protéines. Les travaux menés au cours de cette thèse, et l'ensemble des techniques utilisées, avec notamment la mise au point de l'observation de la biréfringence du rouge Congo par microscopie confocale permettront de développer les études sur cette famille de protéines amyloïdes ainsi que sur les matrices complexes de type biofilm / Biofilms are macromolecular structures which result from the adhesion of microorganisms to a surface. They consist of cells embedded in a network of exopolymers of biological origin which form an extracellular matrix. Biofilms pose technological and health problems in many industrial and medical domains. Understanding the mechanisms of formation of these structures is a major challenge. Despite a great diversity in the structure of biofilms, universal principles seem to govern their composition. Thus, the presence of polysaccharides such as alginate and cellulose plays a major role in their formation and in determining their mechanical properties. If the presence of protein polymers such as amyloid fibers seems to be universal within biofilms, their role in the formation and in the mechanical properties of the matrix remains to be defined. In this study, we characterized the structure and composition of monobacterial biofilms from three different species: P. aeruginosa NK 125502, S. enterica CIP 58.58 and S. epidermidis CIP 53124. We described the formation of amyloid fibers by different peptides from proteins involved in bacterial biofilm formation. Morover our results suggest the presence of this type of fiber within biofilms of Staphylococcus, but also more generally in biofilms of bacteria expressing a protein of the Bap family (Biofilm associated protein). Finally, we analyzed the mechanical properties of various synthetic matrices made of alginate and methyl-cellulose in the presence and absence of protein and amyloid peptides in order to better understand the contribution of this type of fiber on the properties of these matrices. Hence, amyloid fibers modify the mechanical properties of synthetic gels, by increasing the deformation under stress.In conclusion, this study provides new evidence for understanding the role of amyloïd fibers in the biofilm matrix strengthening. The formation of amyloid fibers by the Bap protein of S. epidermidis suggests the possibility of a general amyloid behavior in the Bap protein family. A new application of confocal laser scanning microscopy was developped: the use of the confocal microscope to image the birefringence of Congo red.
3

Chaperons moléculaires et tauopathies : effets de Hsp90 sur la fibrillation in vitro du peptide VQIVYK issu de la protéine tau / Molecular chaperones and tauopathies : Hsp90's effect on fibrillation in vitro of VQIVYK the tau-derived peptide

Schirmer, Claire 15 December 2014 (has links)
Les maladies dites ''conformationnelles'' sont caractérisées par un mauvais repliement des protéines qui, de ce fait, ne peuvent plus assurer leur fonction biologique. C'est le cas des amyloses, ces pathologies impliquent des protéines ayant la capacité de s'agréger pour former des structures spécifiques appelées « fibres amyloïdes ». Aujourd'hui, une trentaine de protéines humaines sont connues pour former ce type de fibres et notamment la protéine tau. Celle-ci est associée à plusieurs maladies neurodégénératives, regroupées sous le terme de « tauopathies », incluant la maladie d'Alzheimer. En conditions physiologiques, tau est associée aux microtubules et régule leur polymérisation. Dans les tauopathies, elle devient hyperphosphorylée et s'agrège dans les neurones sous forme de neurodégénérescences fibrillaires (NFTs) toxiques. Les protéines chaperons et particulièrement la protéine de choc thermique de 90 kDa, Hsp90, régule l'homéostasie de la protéine tau. L'interaction entre tau et Hsp90 implique différentes régions de la protéine tau dont celle contenant un hexapeptide de séquence VQIVYK. Ce court fragment est nécessaire et suffisant pour induire la fibrillation de la protéine tau entière in vivo. Cet hexapeptide est également capable, à lui seul, de former des fibres amyloïdes, in vitro, comparables à celles retrouvées in vivo. Nous avons donc choisi d'utiliser l'hexapeptide VQIVYK comme modèle d'étude de la fibrillation, in vitro, et testé l'effet de Hsp90 sur les processus agrégatifs du peptide. Nous avons démontré que Hsp90 interagit spécifiquement avec les structures amyloïdes formées par le peptide et qu'elle est capable d'inhiber à la fois la polymérisation et la dépolymérisation des fibres. Ce rôle antagoniste joué par Hsp90 permet la stabilisation d'espèces amyloïdes intermédiaires supposées moins neurotoxiques. Ces résultats confirment l'implication de Hsp90 dans les processus agrégatifs de la protéine tau et ouvrent de nouvelles perspectives thérapeutiques contre les pathologies neurodégénératives. De plus, cette étude apporte des éléments de réponse sur le fonctionnement des chaperons moléculaires vis-à-vis de leur protéine cliente. / Conformational diseases are characterized by protein misfolding which causes a loss of biological activity. Amyloidosis is one of these diseases, and it involves the ability of proteins to self-aggregate into specific structures called “amyloid fibers”. At least thirty human proteins, including tau, are known to form amyloid fibers. The tau protein is linked to several neurodegenerative diseases called tauopathies, including Alzheimer’s disease. Tau is in physiological conditions associated with microtubules and regulates their polymerization. In tauopathies, tau becomes hyper-phosphorylated and aggregates into neurotoxic neurofibrillary tangles (NFTs). Molecular chaperones, and particularly the 90-kDa heat shock protein (Hsp90), regulate tau homeostasis. The interaction between tau and Hsp90 involves several tau regions including the sequence VQIVYK. This short fragment is necessary and sufficient on its own to induce aggregation of the full tau protein in vivo. In vitro this hexapeptide is also able to form amyloid fibers similar to those found in vivo. We therefore used this hexapeptide as an in vitro model to study the process of amyloid fibrillation and to test Hsp90’s effects on it. We demonstrated that Hsp90 interacts specifically with peptide fibrillar structures and that Hsp90 is able to inhibit both the polymerization and depolymerization processes. This antagonistic role for Hsp90 allows the stabilization of intermediate amyloid species that may display a lower neurotoxicity. These results confirm that Hsp90 is involved in tau’s aggregation process and paves the way for new therapeutic perspectives in neurodegenerative diseases. Our study also provides clues to the understanding of how molecular chaperones assist in the folding of their client proteins.
4

Dynamique de l'eau d'hydratation de la protéine tau dans des formes native et amyloïde / Hydration water dynamics of the tau protein in its native and amyloid states

Fichou, Yann 11 March 2015 (has links)
Les protéines qui ne possèdent pas de structure unique dans leur forme fonctionnelle constituent la classe des protéines intrinsèquement dépliées (IDPs). Ces dernières sont ubiquitaires dans une cellule et sont connues pour former des agrégats impliqués dans une large variété de maladies. Malgré leurs conformations étendues qui résultent en une large interface avec l'eau environnante, très peu d'informations sont connues sur l'interaction des IDPs avec l'eau. L'eau est parfois appelée la matrice de la vie car elle est indispensable à la plupart des processus biologiques, tels que le repliement, la stabilité ou l'activité des protéines. La protéine tau est une IDP qui régule la dynamique de croissance des microtubules dans les neurones, et dont la fibrillation en fibres de type amyloïde est l'une des marques caractéristiques de la maladie d'Alzheimer. Ce projet de thèse se propose d'explorer l'importance biologique de la dynamique de l'eau autour des IDPs. Nous combinons des méthodes expérimentales et computationnelles, incluant la diffusion incohérente de neutrons, la spectroscopie terahertz, la diffusion de rayons X aux petits angles, et les simulations de dynamique moléculaire, dans le but d'étudier la dynamique de l'eau d'hydratation de la protéine tau, dans ses formes native et fibrillaire. Pour les IDPs comme pour les protéines globulaires, il est montré que la diffusion translationnelle de l'eau d'hydratation permet l'existence des mouvements de larges amplitudes de la protéine, indispensables à la fonction biologique de cette dernière. En comparant avec la forme native, nous mettons aussi en évidence une augmentation de la mobilité de l'eau d'hydratation de la forme fibrillaire de tau. Nous proposons que cette augmentation joue un rôle dans la formation des fibres. De plus, l'étude de la dynamique collective de l'eau d'hydratation montre que la protéine tau influence un volume d'eau deux fois moindre qu'une protéine globulaire équivalente, ce qui pourrait être impliqué dans son mécanisme de liaison avec un partenaire. En conclusion, en étudiant les propriétés dynamiques de l'eau autour des IDPs, ces travaux de thèse suggèrent que la dynamique de l'eau d'hydratation pourrait jouer un rôle fondamental dans les mécanismes de liaison et de fibrillation des IDPs. / Proteins that do not have a well-defined structure in their functional state are referred to as intrinsically disordered proteins (IDPs). IDPs are ubiquitous in biological cells and their aggregation is involved in many diseases. The extended conformations of IDPs result in a large water interface, yet, interactions between IDPs and water are only scarcely documented. Water has been termed the matrix of life because it is essential for a variety of molecular processes, including protein folding, stability, and activity. The IDP tau regulates microtubule activity in neurons and is known to form amyloid fibers that are one of the hallmarks of Alzheimer disease. In this PhD thesis, the biological relevance of water dynamics around IDPs is addressed. We combine computational and experimental approaches, including all-atom MD simulations, incoherent neutron scattering, terahertz spectroscopy and small angle X-ray scattering, to study the hydration water dynamics of the tau protein in its native and fibrillated states. Firstly, a translational diffusion of hydration water molecules is found to be essential for biologically relevant dynamics of both IDPs and globular proteins. Secondly, compared to monomers, we find an enhancement of hydration water mobility around tau amyloid fibers that is suggested to play a role in fiber formation. Finally, the investigation of collective water dynamics reveals that the tau protein influences about two times less water molecules than a globular protein, which might be involved in tau's binding mechanisms. In conclusion, this piece of work investigated the dynamical properties of water around IDPs and suggests that the hydration water dynamics might play fundamental roles in binding and aggregation of IDPs.
5

Anti-biofilm activity of plants used in Ayurvedic medicine and their molecular mechanisms of action on E. coli biofilms

Bhatti, Amita 29 January 2021 (has links)
Antibiotikaresistenz/-toleranz und Evasion des menschlichen Immunsystem sind wesentliche Probleme persistierender chronischer Infektionen, die im Zusammenhang mit Biofilmen stehen. Eine Notwendigkeit alternativer Behandlungen liegt daher nahe. Für diese Studie wurden zehn ayurvedische Pflanzen ausgewählt, die die Produktion von Curli-Fasern und/oder pEtN-Cellulose in E. coli K-12 Makrokolonie-Biofilmen eindeutig hemmten. Eine Reihe molekularer Reporter wurde verwendet, um die molekularen Ziele im Modellorganismus E. coli zu identifizieren. Eine Kombination von mikrobiologischen, molekularbiologischen und enzymatischen Methoden und Experimenten wurde dann verwendet, um die Aktivitäten der Pflanzenextrakte weiter zu charakterisieren. Um ihre Wirkung auf Biofilme eines breiteren Spektrums von Bakterien zu testen, wurden einige relevante gramnegative Pathogene (EAEC, UPEC, P. aeruginosa) und grampositive Bakterien (B. subtilis, S. aureus) als Makrokolonie-Biofilme sowie als submerse Biofilme in Gegenwart der Pflanzenextrakte inkubiert. Die wichtigsten Ergebnisse dieser Studie sind, dass es kein „Allheilmittel“ gibt, das effektiv gegen verschiedene Biofilmstrukturen wirken kann. Es konnte gezeigt werden, dass fast alle Pflanzenextrakte die CsgA Amyloidogenese hemmen. Drei der zehn Pflanzenextrakte beeinflussten die Curli- und pEtN-Cellulose-Gene signifikant, indem sie csgB und dgcC über den Regulator CsgD herunterregulierten. Darüber hinaus wurde festgestellt, dass ein Extrakt die Expression flagellarer Gene in E. coli hochreguliert - eine neue Anti-Biofilm Strategie. Überraschenderweise wurde auch festgestellt, dass ein Pflanzenextrakt, das die Biofilmbildung des Kommensalen E. coli K-12 hemmt, während es die Biofilmbildung von UPEC fördert. Daher können Anti-Biofilm-Effekte stammspezifisch sein. Eine Strategie, bei der verschiedene Pflanzenextrakte kombiniert werden, könnte gegen Biofilme wirken, die aus mehreren Arten bestehen, erfordert jedoch weitere Forschung. / Antibiotic resistance/tolerance and evasion from the human immune system are major causes of concern associated with biofilm-related persistent chronic infections. So, the need for an alternative source of treatment is obvious. In this study, 10 Ayurvedic plants were selected as they clearly inhibited the production of curli fiber and pEtN-cellulose or of curli fibers only in E. coli K-12 macrocolony biofilms. A series of molecular reporters were used to determine the molecular targets using E. coli as model bacteria. A combination of microbiological, molecular biological, and enzymatic assays and experiments were then used to further characterize the activities of the plant extracts. To test anti-biofilm effects on a wider range of bacteria, some relevant Gram-negative pathogens (EAEC, UPEC, P. aeruginosa) and Gram-positive bacteria (B. subtilis, S. aureus) were grown in macrocolony biofilms and submerged biofilms in the presence of active plant extracts. The major findings of this study are that there is not one single “magic bullet” that can effectively work against the diverse biofilm compositions and structures. Nearly all plant extracts were found to inhibit CsgA amyloidogenesis. Three of the ten plant extracts affected the curli and pEtN-cellulose genes significantly by downregulating csgB and dgcC via the CsgD regulator. In addition, one extract was found to upregulate flagellar gene expression in E. coli - this is a new anti-biofilm strategy that had not considered before. Surprising, it was also noticed that one plant extract, which inhibits biofilm formation by commensal E. coli K-12, promotes biofilm formation by UPEC. Thus, anti-biofilm effects can be strain-specific because of the diversity of composition of the matrix within the same bacterial species. A strategy of combining different plant extracts may work to deal with biofilms involving multiple species, but requires more research and understanding.

Page generated in 0.0653 seconds