• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 185
  • 14
  • 12
  • 10
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 285
  • 285
  • 192
  • 147
  • 134
  • 62
  • 41
  • 40
  • 38
  • 28
  • 28
  • 22
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Effects of small molecule modulators and Phospholipid Liposomes on βeta-amyloid (1-40) Amyloidogenesis

Unknown Date (has links)
Beta-Amyloid (1-40) (Aβ40) is an aggregation prone protein, which undergoes a nucleation-dependent aggregation process causing the pathological neurodegeneration by amyloid plaque formation implicated in Alzheimer’s disease. In this thesis, we investigated the effects of small molecule modulators extracted from the marine invertebrate Pseudopterogorgia elisabethae on the Aβ40 amyloidogenic process using in- vitro ThT fluorescence assay and atomic force microscopy. We also investigated the effects of neutral and anionic phospholipid liposomes on Aβ40 aggregation. Our results show that a marine natural product Pseudopterosin-A and its derivatives can suppress and modulate the Aβ40 aggregation process. Furthermore, our results demonstrate that a neutral phospholipid liposome inhibits Aβ40 fibril formation, whereas the anionic liposomes promote it. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015 / FAU Electronic Theses and Dissertations Collection
212

Efeito dos compostos orgânicos de selênio - ebselen e disseleneto de difenila - na morte neuronal causada pelo peptídeo beta-amilóide em culturas primárias de neurônio de hipocampo de rato / Selenium compounds prevent amyloid-beta peptide neurotoxicity in rat primary hippocampal neurons

Godoi, Gabriela Lorea 15 December 2007 (has links)
Made available in DSpace on 2016-03-22T17:26:57Z (GMT). No. of bitstreams: 1 Gabriela Lorea Godoi.pdf: 2588661 bytes, checksum: 727e9c41458c3dce6b21674525afb233 (MD5) Previous issue date: 2007-12-15 / Alzheimer s disease (AD) is the most common form of dementia among elder. Neuropathological hallmarks include amyloid plaque formation, neurofibrillary tangles, neuronal and synaptic loss. The deposit of senile plaques is consistent with induction of oxidative stress, and since free radical scavengers can alleviate amyloid-beta-induced oxidative stress markers, this study aims to identify the neuroprotective effects of the selenium compounds (ebselen and diphenyl diselenide) on the neurotoxicity of amyloid-beta in primary cultures of murine hippocampal neurons. Samples were subjected to immunocytochemistry and western blotting techniques to determine what influence the treatments may have on synaptic protein SNAP-25 and neuronal death. There was a strong increase in relative cell viability associated with ebselen and diphenyl diselenide treatment. Significant increases were observed in the level of synaptic marker synaptosomal-associated protein SNAP-25 with both selenium compounds treatment. Although demonstrated the potential protective effect of selenium compounds in the course of AD, further investigations of synaptic function are important as a therapeutic strategy for AD / .
213

Biochemical and structural studies of amyloid proteins

Wirthensohn, David Christopher January 2019 (has links)
Amyloidogenic neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD) are an important health issue. However, the underlying molecular mechanisms of the disease-related protein aggregates, that are present in humans, are only understood partially. I have used and developed biophysical methods to study the structural and biological properties of individual aggregates of Amyloid β peptide and α-Synuclein, proteins whose aggregation is associated with the development of Alzheimer's and Parkinson's disease respectively. I expanded the single aggregate visualisation through enhancement (SAVE) technique, which is a method based on the fluorescent dye Thioflavin T (ThT) that reversibly bind to the aggregates and whose fluorescence increases upon binding. I firstly explored the use of other dyes for these experiments and found that a ThT dimer has higher affinity to α-Synuclein aggregates in vitro. I then applied the SAVE method to the cerebral spinal fluid (CSF) of a cohort of AD patients and control CSF and observed no clear difference in aggregate number. However, these experiments provided insights into how antibodies bind the aggregates in human CSF. I could show, that despite altering the Ca2+ influx into both cells and vesicles, the antibody did not measurably affect the aggregate structure. To study the size specific effects of the Amyloid β 42 (Aβ42) peptide in more detail, I used and optimised gradient ultracentrifugation combined with single aggregate imaging to study the structural properties of the isolated aggregates. This aggregation kinetic independent method allowed me to compare the properties of fluorescently labelled and unlabelled Aβ42 and characterize the size dependent properties of aggregates in a single experiment. Since I could measure the relative concentration of different size aggregates it was also possible to compare the properties of single aggregates of different sizes. I then used biological assays to examine the ability of aggregates to permeabilise membranes resulting in the entry of calcium ions, and their ability to induce TNFα production in microglia cells. Both processes are thought to play key roles in the development of AD. I found that small soluble oligomers are most potent at inducing Ca2+ influx, whereas longer protofilaments are the most potent inducers of TNFα production. My results suggest that the mechanism by which aggregates damage cells changes as aggregation proceeds, as longer aggregates with different structures are formed. Protofilaments with a diameter of 1 nm or less have a structure that could make them particularly potent at causing the signalling of toll-like receptors, providing a molecular basis for their ability to induce TNFα production.
214

Microfluidics and chemical kinetics to analyse protein interactions, aggregation, and physicochemical properties

Lapinska, Urszula January 2019 (has links)
Proteins play a major role in living systems and present a wide spectrum of functionalities. Many different types of proteins are involved into biological processes, such as the catalysis of biochemical reactions, cellular membrane transport, immune system response and DNA replication. However, some proteins and peptides might become harmful to living organisms; for example, their abnormal aggregation causes neurodegenerative disorders including Alzheimer disease (AD). One of the causes of AD is the presence of amyloid beta peptides Aβ(1-42), Aβ(1-40), which self-assemble into insoluble fibrils and plaques, which surround neuronal cells impeding synapsis. The number of AD patients is increasing, but a cure has not been founded yet. Therefore, it is crucial to investigate the mechanisms underlying amyloid aggregation and screening for compounds able to prevent this irreversible process. Microfluidics permits characterising the physicochemical properties of proteins, investigate their aggregation and study their interactions with other molecules. Chemical kinetics allows studying the microscopic events occurring during protein self-assembly. The combination of these two techniques provides a powerful tool for the identification of compounds inhibiting the aggregation process. In this thesis by using microfluidics, chemical kinetics and other biophysical assays, I have investigated the proteins isoelectric point (pI) and the inhibition of aberrant Aβ(1-42) self-assembly process. Firstly, I describe the development of a microfluidic platform allowing for the measurement of the protein pI, in a gradient-free manner. This approach overcomes a fundamental limitation of convectional techniques that is the achievement of a stable and well-controlled pH gradient. Secondly, I investigate the inhibiting effect of llama nanobodies on Aβ(1-42) aggregation. The findings from this study show that nanobodies target monomeric species with high affinity whereas interactions with fibril surfaces are weak. Finally, I discuss the use of other compounds inhibiting specific nucleation stages. These include the chaperones clusterin and brichos, as well as soot and pure carbon nanoparticles. Importantly, the addition of both chaperones to Aβ(1-42) solutions has an additive inhibitory effect on aggregation. My findings will improve the characterization of the physicochemical properties of proteins as well as providing promising candidates for the inhibition of specific stages of amyloid beta aggregation opening the way to possible cures for AD disease.
215

MRI T2 Signal Changes Indicate Tau Pathophysiology in a Murine Alzheimer's Disease Model

Adhikari, Rajan Deep 01 August 2017 (has links)
Pathogenesis, diagnosis and treatment, the essential domains in medical practice, seem helpless to address Alzheimer's disease (AD). With a huge mortality rate, it is looming and threatening the socioeconomic barrier. Despite many different studies, the pathogenesis of AD remains inconclusive. However, growing numbers of studies suggest oxidative stress to contribute to the initiation and progression of AD. We propose an iron hypothesis: iron mediated oxidative damage by reactive oxygen species (ROS), which induces protective roles of amyloid beta and hyper-phosphorylated tau (HP-tau) to sequester iron and limit the disease. We propose to study such mechanism using transgenic mice models for AD, inducing oxidative stress to elevate intracellular iron, and analyze its co-localization with proteins using Magnetic Resonance Imaging (MRI), 1H Nuclear Magnetic Resonance (NMR) spectroscopy and Western blot. We report three primary findings: 1) a significant loss in T2 signal over bilateral hippocampi of transgenic mice compared to the wild types (WT) by three months, corresponding to early disease and the ability of proteins to sequestration iron. Ability of rescue treatments to impede disease progression reflected as preserved T2 signal intensities over these areas throughout our study period of nine months. 2) Concentration of zinc and its dual role in the presence or absence of oxidative stress reflected as loss of 1H NMR T2 measurement showed that higher concentrations of zinc were neuro protective when there was an active oxidative stress inducing condition, but neurotoxic and promote oxidative damage in normal condition. And 3) Different strains of mice, according to their transgene, expressed various proteins associated with AD. However, these expressions were in accordance with our iron-hypothesis.
216

Biomarkers as Monitors of Drug Effect, Diagnostic Tools and Predictors of Deterioration Rate in Alzheimer’s Disease

Degerman Gunnarsson, Malin January 2013 (has links)
Decreased amyloid-ß42 (Aß42), increased total tau (t-tau) and phosphorylated tau (p-tau) in cerebrospinal fluid (CSF) reflect histopathological core changes in the most common dementia disorder, Alzheimer’s disease (AD). They discriminate AD from healthy controls and predict conversion to AD with a relatively high accuracy. Memantine, an uncompetitive NMDA-receptor antagonist, is indicated for symptomatic treatment of AD. The first aim of this thesis was to investigate effects of memantine on CSF concentrations of Aβ42, tau and p-tau. Secondly, the aim was to explore the relation between these CSF biomarkers and retention of the amyloid biomarker Pittsburgh compound B using positron emission tomography (PIB PET), regional glucose metabolism measured with 18Fluoro-2-deoxy-d-glucose (FDG) PET and neuropsychological test performance. The third aim was to investigate their possible utility as predictors of future rate of AD dementia deterioration. All patients in the studies were recruited from the Memory Clinic, Uppsala University Hospital. In study I CSF p-tau concentrations in 11 AD patients were reduced after twelve months treatment with memantine, indicating that this compound may affect a key pathological process in AD. Results from study II showed that the concentrations of CSF Aß42 are lower in PIB+ patients than in PIB- patients, and that the PIB retention was stable during 12 months. In study III 10 patients with the diagnoses AD (6 PIB+/4 PIB-) and 8 subjects (1 PIB+/7 PIB-) with frontotemporal dementia were included. PIB+ patients had lower psychomotor speed measured by performance on the Trail Making Test A and impaired visual episodic memory compared to the PIB- patients. The initial clinical diagnoses were changed in 33% of the patients (6/18) during follow-up. Study IV is the first-ever report of an association between high CSF tau and dying in severe dementia. These 196 AD patients were followed up to nine years after baseline lumbar puncture. Moreover, CSF t-tau concentrations above median was associated with an increased risk of rapid cognitive decline (OR 3.31 (95% CI 1.53-7.16), independently of baseline functional stage. Thus, a clear association between high levels of CSF t-tau and p-tau and a more aggressive course of the disease was shown.
217

An investigation of the ABAD-Aβ interaction as a potential therapeutic target for the treatment of Alzheimer’s disease

Muirhead, Kirsty E. A. January 2011 (has links)
Alzheimer’s disease (AD) is the leading cause of dementia but despite being identified over a century ago, current treatments remain limited. To date, no disease-modifying therapies are available. Soluble, intracellular forms of β-amyloid (Aβ), a protein associated with AD, have been identified and intracellular targets of Aβ are being investigated as potential targets for new drugs. Amyloid binding alcohol dehydrogenase (ABAD) was previously identified as a mitochondrial target of Aβ and is known to be up-regulated in AD. This interaction results in production of reactive oxygen species and cell death. Using a small peptide, known as the “decoy peptide”, disruption of this interaction has been shown to reverse biochemical and behavioural symptoms in an AD mouse model. The work reported in this thesis describes the approaches taken to develop methods for in vitro and ex vivo study of the interaction between ABAD and Aβ. A fluorogenic assay for measuring the intracellular activity of ABAD in living cells was developed and using this technique, the intracellular inhibition of ABAD by Aβ was observed for the first time. Surface plasmon resonance was used to measure binding between ABAD and Aβ and also showed the first quantitative analysis of direct binding of the decoy peptide to Aβ42. In order to synthesise small molecule inhibitors of ABAD activity with the aim of developing a molecular probe of the enzyme’s activity, compounds were identified by screening a fragment-based library. Subsequent optimisation of the compound structure led to a 10-fold improvement in the IC50 and has resulted in a lead compound for future development. A similar screening strategy was employed to identify potential small molecule inhibitors of the ABAD-Aβ interaction. This research has resulted in a range of tools and methods for studying ABAD activity and interactions, which will greatly benefit future work on developing compounds that inhibit the ABAD-Aβ interaction to provide a novel method for treating Alzheimer’s disease.
218

Etude de la dynamique de tau dans le compartiment synaptique dans un contexte physiologique et pathologique exemple de la maladie d'Alzheimer

Frandemiche, Marie-Lise 11 December 2013 (has links) (PDF)
La maladie d'Alzheimer est une pathologie neurodégénérative caractérisée par une perte progressive des fonctions cognitives. Cette perte des fonctions cognitives est directement liée à une atteinte neuronale et plus particulièrement synaptique. Deux caractéristiques histopathologiques en lien avec des dérégulations protéiques sont retrouvées chez les patients atteints de la MA : les plaques séniles extracellulaires composées de peptides β-amyloïdes (Aβ) fibrillaires et la dégénérescence neurofibrillaire constituée d'agrégats intracellulaires de protéines tau hyper et anormalement phosphorylées. Les formes agrégées de ces protéines ont longtemps été considérées comme neurotoxiques, cependant, il est maintenant avéré que les formes solubles de ces protéines dérégulées étaient à l'origine de la pathologie. Les synapses excitatrices situées au niveau des épines dendritiques sont les cibles du peptide Aβ sous forme soluble et oligomèrique (Aβo). Ce dernier en altère la fonction et induit leurs pertes. Récemment, il a été montré que cette action synaptotoxique de l'Aβo est dépendante de la protéine tau. De plus, dans un autre modèle de tauopathie, la démence fronto-temporale avec syndrome parkinsonien liée au chromosome 17 (FTDP-17), la synaptotoxicité de tau s'est révélée dépendante de son état de phosphorylation. Ainsi, il émerge le concept de tau synaptique dans un contexte pathologique. Cependant, des études plus récentes ont montré que, en condition physiologique, une petite portion de tau se retrouve au niveau de la synapse. Au regard de ces nouvelles données, il est possible que tau, en plus d'être une protéine axonale, nucléaire et membranaire, soit aussi synaptique. Dans ce contexte, les travaux présentés dans cette thèse visent à étudier l'implication de la protéine tau dans la fonction synaptique et les perturbations induites par la présence d'Aβo. Ces travaux ont été effectués sur un modèle cellulaire de cultures primaires de neurones corticaux et sur tranche d'hippocampe de souris par des méthodes biochimiques et d'analyse dynamique en microscopie confocale sur cellules vivantes. Afin d'étudier l'impact d'une activation synaptique sur un système de culture neuronal, l'utilisation combinée de la bicuculline, antagoniste des récepteurs gabaergique GABAa et de 4-amino pyridine, bloqueur de canaux potassique, permet d'établir une potentialisation à long terme sur les synapses. Grâce à un protocole d'extraction permettant d'isoler le compartiment post-synaptique (fraction contenant la densité post synaptique dont le marqueur protéique PSD-95), nous avons montré que l'activation synaptique enrichit la fraction PSD en protéine tau suggérant son implication dans les phénomènes de plasticité synaptique. L'étude du cytosquelette d'actine prépondérant au niveau synaptique a révélé que l'actine filamenteuse est un partenaire de tau. Dans un contexte pathologique, l'incubation d'Aβo induit le recrutement de tau à la synapse et perturbe l'organisation du cytosquelette d'actine. Ce changement structurel du cytosquelette d'actine pourrait être à l'origine des perturbations de la plasticité et du maintien synaptique induit par Aβo. En conclusion, l'ensemble des résultats de cette thèse suggère que tau exerce une fonction physiologique au sein de la synapse impliquant une interaction avec le cytosquelette d'actine et qu'en conditions pathologiques (induites par Aβo), on observe une altération fonctionnelle du rôle de tau à la synapse qui pourrait participer aux perturbations cognitives caractéristiques de la MA.
219

Development of molecular recognition by rational and combinatorial engineering

Jonsson, Andreas January 2009 (has links)
Combinatorial protein engineering, taking advantage of large libraries of protein variants and powerful selection technology, is a useful strategy for developing affinity proteins for applications in biotechnology and medicine. In this thesis, two small affinity proteins have been subjected to combinatorial protein engineering to improve or redirect the binding. In two of the projects, a three-helix protein domain based on staphylococcal protein A has been used as scaffold to generate so called Affibody molecules capable of binding to key proteins related to two diseases common among elderly people. In the first project, Affibody molecules were selected using phage display technology for binding to Ab-peptides, believed to play a crucial role in Alzheimer’s disease, in that they can oligomerize and contribute to the formation of neural plaques in the brain. The selected Affibody molecules were found to efficiently capture Ab from spiked human plasma when coupled to an affinity resin. The structure of the complex was determined by nuclear magnetic resonance (NMR) and demonstrated that the original helix 1 in the two Affibody molecules was unfolded upon binding, forming intermolecular b-sheets that stabilized the Ab peptide as buried in a tunnel-like cavity. Interestingly, the complex structure also revealed that the Affibody molecules were found to homo-dimerize via a disulfide bridge and bind monomeric Ab-peptide with a 2:1 stoichiometry. Furthermore, Affibody molecule-mediated inhibition of Ab fibrillation in vitro, suggested a potential of selected binders for future therapeutic applications. In the second project, two different selection systems were used to isolate Affibody molecules binding to tumor necrosis factor alpha (TNF), which is involved in inflammatory diseases such as rheumatoid arthritis. Both selection systems, phage display and Gram-positive bacterial display, could successfully generate TNF-binding molecules, with equilibrium dissociation constants (KD) in the picomolar to nanomolar range. Initial characterization of the binding to TNF was evaluated by competitive binding studies between the Affibody molecules and clinically approved TNF antagonists (adaliumumab, infliximab and etanercept) and demonstrated overlapping binding sites with both adaliumumab and etanercept. Furthermore, linkers of different lengths were introduced between Affibody moieties, in dimeric and trimeric constructs that were evaluated for their ability to block the binding between TNF and a recombinant form of its receptor. In the dimeric constructs, a linker length of 20-40 amino acids seemed to have an advantage compared to shorter and longer linkers, and the tested trimeric construct could block the TNF binding at even lower concentration. The results provided valuable information for the design of future Affibody-based molecules that could be investigated in therapeutic or medical imaging applications. In the third project aiming to generate a protein domain with capacity to influence the pharmacokinetics of protein therapeutics, a natural serum albumin-binding domain (ABD) was subjected to an engineering effort aiming at improving the affinity to human serum albumin (HSA), a protein with an exceptional long half-life in serum (19 days). First-generation affinity improved ABD variants were selected using phage display technology from a constructed ABD library. After additional rational engineering of such first generation variants, one variant with a 10,000-fold improved affinity to HSA (KD ≈ 120 fM) was obtained. Furthermore, characterization of this molecule also demonstrated improved affinity to several other serum albumins. When used as a gene fusion partner, this affinity-maturated variant denoted ABD035, should have the potential to extend the half-life of biopharmaceuticals in humans, and several other animal species. / QC 20100722
220

The role of the female reproductive hormones in Alzheimer's disease

Barron, Anna May January 2009 (has links)
[Truncated abstract] Alzheimer’s disease (AD) is a progressive neurodegenerative disease which manifests clinically as personality changes and global cognitive decline resulting in a loss of function, ultimately leading to death. Whilst causal genetic mutations have been identified, accounting for a small proportion of familial cases, the vast majority of all AD cases are late onset and idiopathic. However, a number of risk factors have been identified, including age associated changes in the reproductive hormones – estrogen and the gonadotropins. Previous in vitro and in vivo studies have implicated both estrogen and the gonadotropins in the regulation of the neurotoxic beta amyloid (Aß) peptide, accumulation of which is thought to be a key pathogenic event in the development of AD, but the role of these hormones in the etiology and pathogenesis of AD remains contentious. The aim of this thesis was to further understanding of the role of female reproductive hormones in modulating susceptibility to AD. The role of menopausal hormone dysregulation in behavior, cognitive decline and Aß-related neuropathology was examined in vivo in 4 studies using animal models of AD and menopause. The first two studies used a mouse model of AD expressing a human PS1 mutation (PS1KI) to examine the effects of ovariectomy as a model of menopause on cognition and neuropathology. Ovariectomy was found to selectively impair learning on a spatial working memory task without affecting working memory recall or reference memory performance. However, this cognitive impairment was not associated with any changes in Aß accumulation or oxidative stress. ... However, these findings cannot explain the lack of effect of estrogen supplementation on Aß levels. It is possible that supra-physiological doses of estrogen are necessary to yield anti-amyloidogenic and anti-oxidative benefits in ovariectomized sheep. It is becoming clear that the relationship between hormone changes at menopause and risk of AD may be more complicated than previously conceived. This study has begun to tease apart the relative contributions of estrogen and the gonadotropin hormones in the modulation of Aß, accumulation of which may confer susceptibility to AD. The findings presented indicate that the gonadotropins may play an important role in the regulation of AD-related behavior and cognition. The observed functional effects of the gonadotropins may also have implications for our understanding of behavioral and cognitive changes occurring during reproductive events. Based on the evidence presented here, combined with previous literature, it is clear that both estrogen and the gonadotropins are involved in the modulation of Aß accumulation, however, elucidation of the circumstances necessary to elicit these effects and their clinical relevance to humans will require further investigation. These findings contribute to a more sophisticated understanding of the post-menopausal hormonal milieu, recognizing the role of the gonadotropin hormones and that gonadal estrogen depletion does not necessarily result in brain estrogen depletion.

Page generated in 0.0319 seconds