1 |
Aplicação da análise inversa via otimização extrema generalizada em projetos de iluminação / Inverse analysis applied via generalized extremal optimization in design illuminationCassol, Fabiano January 2009 (has links)
O objetivo dos projetos de iluminação de interiores é determinar a posição e o poder luminoso das lâmpadas para satisfazer a condição de iluminância prescrita. Nesses projetos é especificado tanto o fluxo luminoso que se deseja obter na superfície de trabalho quanto o poder emissivo das demais superfícies, sendo que as fontes luminosas não possuem qualquer condição prescrita. Essas condições de contorno conhecidas do sistema em estudo muitas vezes não são suficientes para estabelecer um equacionamento, principalmente quando as informações disponíveis são originadas de condições hipotéticas. Dessa forma, esses problemas podem ser resolvidos como uma análise inversa de problemas convencionais. Projetos inversos são tipicamente formulados por um sistema de equações que, por ser na maioria das vezes malcondicionado, exigem métodos especiais de solução, ou regularização, para a obtenção de respostas que são na maioria das vezes soluções aproximadas. A técnica de projetos inversos tem sido bem sucedida em problemas de transferência de calor radiante em cavidades com superfícies cinzas, ou seja, com propriedades radiantes independentes do comprimento de onda. Este trabalho estende a técnica inversa para a solução de problemas de radiação luminosa, mantendo a condição de superfície cinza, apresentando uma compilação de informações relevantes aos projetos de iluminação e promovendo uma integração dessa área do conhecimento com os conceitos clássicos de radiação térmica. É apresentada uma modelagem matemática do comportamento da radiação térmica aplicada à iluminação, juntamente com as características da visão humana e o comportamento das lâmpadas incandescentes, de modo a aplicar as relações de radiação em projetos de iluminação. A regularização do sistema de equações é realizada pelo método da Otimização Extrema Generalizada (GEO), classificado como um método de otimização estocástico de busca global. A metodologia aplicada a uma cavidade retangular tridimensional conduz a soluções satisfatórias, onde se destaca a possibilidade de parametrização do posicionamento das fontes de luz. A melhor solução ocorre com a condição de posicionamento e potência das lâmpadas variáveis. / The objective of the illumination design is to determine the position and the luminous power of the lamps that are capable of providing a specified illumination. In the common methodologies, it is specified the luminous flux on the design surface both the emissive power of another walls, while the light sources are left unconstrained. The set of known boundary conditions for the case under study does not establish a well-posed system of equations, especially when the available information originates from measured data or conditions which are desired to be achieved. Then, these problems can be interpreted as inverse analysis of conventional problems. Inverse designs are typically formulated by an ill-conditioned system of equations, which requires special methods of solution, or regularization, to achieve approximated answers. The inverse design technique has proved a successful method to tackle the problem of radiative heat transfer in enclosures with gray wall, that is, having radiative properties that are independent of the wavelength. This work extends the inverse technique to illumination, keeping the condition of gray wall, showing a compilation of the relevant information for the illumination design, and integrating this area of knowledge to the well established concepts of thermal radiation. The mathematical modeling of the behavior of thermal radiation applied to illumination, together with the characteristics of the human vision and the behavior of incandescent lamps, are presented and incorporated into the inverse analysis. The regularization of the system of equations is carried out by the Generalized Extremal Optimization (GEO) method, classified as a method of stochastic global search optimization. The proposed methodology is applied to a three-dimensional enclosure, and leads to satisfactory results, including the determination of the light sources positions. The best solution was achieved when both the power and positions of the lamps were left unconstrained.
|
2 |
Aplicação da análise inversa via otimização extrema generalizada em projetos de iluminação / Inverse analysis applied via generalized extremal optimization in design illuminationCassol, Fabiano January 2009 (has links)
O objetivo dos projetos de iluminação de interiores é determinar a posição e o poder luminoso das lâmpadas para satisfazer a condição de iluminância prescrita. Nesses projetos é especificado tanto o fluxo luminoso que se deseja obter na superfície de trabalho quanto o poder emissivo das demais superfícies, sendo que as fontes luminosas não possuem qualquer condição prescrita. Essas condições de contorno conhecidas do sistema em estudo muitas vezes não são suficientes para estabelecer um equacionamento, principalmente quando as informações disponíveis são originadas de condições hipotéticas. Dessa forma, esses problemas podem ser resolvidos como uma análise inversa de problemas convencionais. Projetos inversos são tipicamente formulados por um sistema de equações que, por ser na maioria das vezes malcondicionado, exigem métodos especiais de solução, ou regularização, para a obtenção de respostas que são na maioria das vezes soluções aproximadas. A técnica de projetos inversos tem sido bem sucedida em problemas de transferência de calor radiante em cavidades com superfícies cinzas, ou seja, com propriedades radiantes independentes do comprimento de onda. Este trabalho estende a técnica inversa para a solução de problemas de radiação luminosa, mantendo a condição de superfície cinza, apresentando uma compilação de informações relevantes aos projetos de iluminação e promovendo uma integração dessa área do conhecimento com os conceitos clássicos de radiação térmica. É apresentada uma modelagem matemática do comportamento da radiação térmica aplicada à iluminação, juntamente com as características da visão humana e o comportamento das lâmpadas incandescentes, de modo a aplicar as relações de radiação em projetos de iluminação. A regularização do sistema de equações é realizada pelo método da Otimização Extrema Generalizada (GEO), classificado como um método de otimização estocástico de busca global. A metodologia aplicada a uma cavidade retangular tridimensional conduz a soluções satisfatórias, onde se destaca a possibilidade de parametrização do posicionamento das fontes de luz. A melhor solução ocorre com a condição de posicionamento e potência das lâmpadas variáveis. / The objective of the illumination design is to determine the position and the luminous power of the lamps that are capable of providing a specified illumination. In the common methodologies, it is specified the luminous flux on the design surface both the emissive power of another walls, while the light sources are left unconstrained. The set of known boundary conditions for the case under study does not establish a well-posed system of equations, especially when the available information originates from measured data or conditions which are desired to be achieved. Then, these problems can be interpreted as inverse analysis of conventional problems. Inverse designs are typically formulated by an ill-conditioned system of equations, which requires special methods of solution, or regularization, to achieve approximated answers. The inverse design technique has proved a successful method to tackle the problem of radiative heat transfer in enclosures with gray wall, that is, having radiative properties that are independent of the wavelength. This work extends the inverse technique to illumination, keeping the condition of gray wall, showing a compilation of the relevant information for the illumination design, and integrating this area of knowledge to the well established concepts of thermal radiation. The mathematical modeling of the behavior of thermal radiation applied to illumination, together with the characteristics of the human vision and the behavior of incandescent lamps, are presented and incorporated into the inverse analysis. The regularization of the system of equations is carried out by the Generalized Extremal Optimization (GEO) method, classified as a method of stochastic global search optimization. The proposed methodology is applied to a three-dimensional enclosure, and leads to satisfactory results, including the determination of the light sources positions. The best solution was achieved when both the power and positions of the lamps were left unconstrained.
|
3 |
Aplicação da análise inversa via otimização extrema generalizada em projetos de iluminação / Inverse analysis applied via generalized extremal optimization in design illuminationCassol, Fabiano January 2009 (has links)
O objetivo dos projetos de iluminação de interiores é determinar a posição e o poder luminoso das lâmpadas para satisfazer a condição de iluminância prescrita. Nesses projetos é especificado tanto o fluxo luminoso que se deseja obter na superfície de trabalho quanto o poder emissivo das demais superfícies, sendo que as fontes luminosas não possuem qualquer condição prescrita. Essas condições de contorno conhecidas do sistema em estudo muitas vezes não são suficientes para estabelecer um equacionamento, principalmente quando as informações disponíveis são originadas de condições hipotéticas. Dessa forma, esses problemas podem ser resolvidos como uma análise inversa de problemas convencionais. Projetos inversos são tipicamente formulados por um sistema de equações que, por ser na maioria das vezes malcondicionado, exigem métodos especiais de solução, ou regularização, para a obtenção de respostas que são na maioria das vezes soluções aproximadas. A técnica de projetos inversos tem sido bem sucedida em problemas de transferência de calor radiante em cavidades com superfícies cinzas, ou seja, com propriedades radiantes independentes do comprimento de onda. Este trabalho estende a técnica inversa para a solução de problemas de radiação luminosa, mantendo a condição de superfície cinza, apresentando uma compilação de informações relevantes aos projetos de iluminação e promovendo uma integração dessa área do conhecimento com os conceitos clássicos de radiação térmica. É apresentada uma modelagem matemática do comportamento da radiação térmica aplicada à iluminação, juntamente com as características da visão humana e o comportamento das lâmpadas incandescentes, de modo a aplicar as relações de radiação em projetos de iluminação. A regularização do sistema de equações é realizada pelo método da Otimização Extrema Generalizada (GEO), classificado como um método de otimização estocástico de busca global. A metodologia aplicada a uma cavidade retangular tridimensional conduz a soluções satisfatórias, onde se destaca a possibilidade de parametrização do posicionamento das fontes de luz. A melhor solução ocorre com a condição de posicionamento e potência das lâmpadas variáveis. / The objective of the illumination design is to determine the position and the luminous power of the lamps that are capable of providing a specified illumination. In the common methodologies, it is specified the luminous flux on the design surface both the emissive power of another walls, while the light sources are left unconstrained. The set of known boundary conditions for the case under study does not establish a well-posed system of equations, especially when the available information originates from measured data or conditions which are desired to be achieved. Then, these problems can be interpreted as inverse analysis of conventional problems. Inverse designs are typically formulated by an ill-conditioned system of equations, which requires special methods of solution, or regularization, to achieve approximated answers. The inverse design technique has proved a successful method to tackle the problem of radiative heat transfer in enclosures with gray wall, that is, having radiative properties that are independent of the wavelength. This work extends the inverse technique to illumination, keeping the condition of gray wall, showing a compilation of the relevant information for the illumination design, and integrating this area of knowledge to the well established concepts of thermal radiation. The mathematical modeling of the behavior of thermal radiation applied to illumination, together with the characteristics of the human vision and the behavior of incandescent lamps, are presented and incorporated into the inverse analysis. The regularization of the system of equations is carried out by the Generalized Extremal Optimization (GEO) method, classified as a method of stochastic global search optimization. The proposed methodology is applied to a three-dimensional enclosure, and leads to satisfactory results, including the determination of the light sources positions. The best solution was achieved when both the power and positions of the lamps were left unconstrained.
|
4 |
Análise inversa em cavidades radiantes com superfícies não-cinzas : uma abordagem para projetos de iluminação / Inverse analysis with non-gray surfaces : an approach for illumination designSeewald, Alexandre January 2006 (has links)
Em diversas análises em engenharia, as condições de contorno previamente conhecidas do sistema em estudo não são suficientes para estabelecer um equacionamento bemposto. Tal situação ocorre com freqüência quando as informações disponíveis são originadas de dados medidos ou condições que se deseja alcançar. Esses problemas podem ser interpretados como uma análise inversa de problemas convencionais em que apenas uma condição de contorno é imposta em cada fronteira do sistema. Em projetos de iluminação de interiores, nas áreas de trabalho são especificados tanto o fluxo luminoso (diretamente) quanto o poder emissivo luminoso (indiretamente); as fontes luminosas não possuem qualquer condição prescrita. O objetivo do projeto de iluminação é determinar a posição e o poder luminoso das lâmpadas para satisfazer à condição de iluminação nas áreas de trabalho. Projetos inversos são tipicamente formulados por um sistema de equações mal-condicionado, exigindo métodos especiais de solução, ou regularização, para a obtenção de repostas aproximadas, porém de utilidade prática. A técnica de projetos inversos tem sido bem-sucedida em problemas de transferência de calor radiante em cavidades com superfícies cinzas, ou seja, com propriedades radiantes independentes do comprimento de onda. O presente trabalho, além de estender a técnica inversa para a solução de problemas de radiação luminosa, levando em conta a eficácia luminosa da visão humana, considera superfícies não-cinzas. Neste caso, o problema é descrito por um sistema de equações não-lineares, por não se conhecer a quantidade de energia luminosa em cada região do espectro de radiação. A não-linearidade é contornada pelo emprego de um método iterativo que define a temperatura necessária nas fontes luminosas para atender à condição calculada pelo método inverso, distribuindo essa energia coerentemente nas bandas espectrais. O presente trabalho apresenta também uma compilação de informações relevantes aos projetos de iluminação, promovendo uma integração dessa área do conhecimento com os conceitos clássicos de radiação térmica. É apresentada uma modelagem matemática da visão humana bem como uma modelagem do comportamento de lâmpadas incandescentes, de modo a aplicar as relações de radiação em projetos de iluminação. A regularização do sistema de equações é realizada pelo método TSVD (Truncated Singular Value Decomposition). A metodologia sugerida, aplicada a uma cavidade retangular tridimensional, conduz a resultados satisfatórios, sendo capaz de atingir a convergência na distribuição de energia luminosa nas bandas espectrais em apenas três iterações. Isso demonstra que a metodologia é estável, pois nenhum tipo de relaxação foi necessária. Alguns casos práticos são resolvidos, podendo-se evidenciar a influência das propriedades espectrais das superfícies não-cinzas na potência luminosa das fontes. / In several analyses in engineering, the set of known boundary conditions for the case under study does not establish a well posed system of equations. Such situation often occurs when the available information comes from measured data or conditions which are desired to be achieved. These problems can be interpreted as inverse analysis of conventional problems in which only one condition is imposed on the boundaries of the system. The illumination design of environments: in the working areas, both the luminous flux (directly) and the luminous emissive power (indirectly) are specified, while the light sources are left unconstrained. The objective of the illumination design is to determine the position and the luminous power of the lamps that are capable of providing the required illumination in the working area. Inverse designs are typically formulated by an ill-conditioned system of equations, which requires special methods of solution, or regularization, to achieve approximated, but of practical use, answers. The inverse design technique has proved a successful method to tackle the problem of radiative heat transfer in enclosures with gray walls, that is, having radiative properties that are independent of the wavelength. This work, in addition to extending the inverse technique to illumination, taking into account the luminous efficacy of the human eye, considers non-gray walls. In this case, the problem is described by a system of non-linear equations, since the amount of the luminous energy in the spectral bands is not known a priori. The non-linearity is dealt with the use of an iterative method to determine the temperatures of the illumination sources that satisfy the prescribed conditions on the working area, at the same time leading to a consistent distribution of the luminous energy in the bands. This work also presents a compilation of the relevant information for the illumination design, integrating this area of knowledge to the well established concepts of thermal radiation. The mathematical modeling of the human vision as well as of the behavior of incandescent lamps are presented and incorporated into the inverse analysis. The regularization of the system of equations is carried out by the TSVD (Truncated Singular Value Decomposition) method. The proposed methodology is applied to a three-dimensional enclosure, and leads to satisfactory results after only three iterations, which demonstrates the stability of the method. A few practical cases are solved, showing the influence of the spectrally dependent properties of the non-gray walls on the luminous source powers.
|
5 |
Análise inversa em cavidades radiantes com superfícies não-cinzas : uma abordagem para projetos de iluminação / Inverse analysis with non-gray surfaces : an approach for illumination designSeewald, Alexandre January 2006 (has links)
Em diversas análises em engenharia, as condições de contorno previamente conhecidas do sistema em estudo não são suficientes para estabelecer um equacionamento bemposto. Tal situação ocorre com freqüência quando as informações disponíveis são originadas de dados medidos ou condições que se deseja alcançar. Esses problemas podem ser interpretados como uma análise inversa de problemas convencionais em que apenas uma condição de contorno é imposta em cada fronteira do sistema. Em projetos de iluminação de interiores, nas áreas de trabalho são especificados tanto o fluxo luminoso (diretamente) quanto o poder emissivo luminoso (indiretamente); as fontes luminosas não possuem qualquer condição prescrita. O objetivo do projeto de iluminação é determinar a posição e o poder luminoso das lâmpadas para satisfazer à condição de iluminação nas áreas de trabalho. Projetos inversos são tipicamente formulados por um sistema de equações mal-condicionado, exigindo métodos especiais de solução, ou regularização, para a obtenção de repostas aproximadas, porém de utilidade prática. A técnica de projetos inversos tem sido bem-sucedida em problemas de transferência de calor radiante em cavidades com superfícies cinzas, ou seja, com propriedades radiantes independentes do comprimento de onda. O presente trabalho, além de estender a técnica inversa para a solução de problemas de radiação luminosa, levando em conta a eficácia luminosa da visão humana, considera superfícies não-cinzas. Neste caso, o problema é descrito por um sistema de equações não-lineares, por não se conhecer a quantidade de energia luminosa em cada região do espectro de radiação. A não-linearidade é contornada pelo emprego de um método iterativo que define a temperatura necessária nas fontes luminosas para atender à condição calculada pelo método inverso, distribuindo essa energia coerentemente nas bandas espectrais. O presente trabalho apresenta também uma compilação de informações relevantes aos projetos de iluminação, promovendo uma integração dessa área do conhecimento com os conceitos clássicos de radiação térmica. É apresentada uma modelagem matemática da visão humana bem como uma modelagem do comportamento de lâmpadas incandescentes, de modo a aplicar as relações de radiação em projetos de iluminação. A regularização do sistema de equações é realizada pelo método TSVD (Truncated Singular Value Decomposition). A metodologia sugerida, aplicada a uma cavidade retangular tridimensional, conduz a resultados satisfatórios, sendo capaz de atingir a convergência na distribuição de energia luminosa nas bandas espectrais em apenas três iterações. Isso demonstra que a metodologia é estável, pois nenhum tipo de relaxação foi necessária. Alguns casos práticos são resolvidos, podendo-se evidenciar a influência das propriedades espectrais das superfícies não-cinzas na potência luminosa das fontes. / In several analyses in engineering, the set of known boundary conditions for the case under study does not establish a well posed system of equations. Such situation often occurs when the available information comes from measured data or conditions which are desired to be achieved. These problems can be interpreted as inverse analysis of conventional problems in which only one condition is imposed on the boundaries of the system. The illumination design of environments: in the working areas, both the luminous flux (directly) and the luminous emissive power (indirectly) are specified, while the light sources are left unconstrained. The objective of the illumination design is to determine the position and the luminous power of the lamps that are capable of providing the required illumination in the working area. Inverse designs are typically formulated by an ill-conditioned system of equations, which requires special methods of solution, or regularization, to achieve approximated, but of practical use, answers. The inverse design technique has proved a successful method to tackle the problem of radiative heat transfer in enclosures with gray walls, that is, having radiative properties that are independent of the wavelength. This work, in addition to extending the inverse technique to illumination, taking into account the luminous efficacy of the human eye, considers non-gray walls. In this case, the problem is described by a system of non-linear equations, since the amount of the luminous energy in the spectral bands is not known a priori. The non-linearity is dealt with the use of an iterative method to determine the temperatures of the illumination sources that satisfy the prescribed conditions on the working area, at the same time leading to a consistent distribution of the luminous energy in the bands. This work also presents a compilation of the relevant information for the illumination design, integrating this area of knowledge to the well established concepts of thermal radiation. The mathematical modeling of the human vision as well as of the behavior of incandescent lamps are presented and incorporated into the inverse analysis. The regularization of the system of equations is carried out by the TSVD (Truncated Singular Value Decomposition) method. The proposed methodology is applied to a three-dimensional enclosure, and leads to satisfactory results after only three iterations, which demonstrates the stability of the method. A few practical cases are solved, showing the influence of the spectrally dependent properties of the non-gray walls on the luminous source powers.
|
6 |
Análise inversa em cavidades radiantes com superfícies não-cinzas : uma abordagem para projetos de iluminação / Inverse analysis with non-gray surfaces : an approach for illumination designSeewald, Alexandre January 2006 (has links)
Em diversas análises em engenharia, as condições de contorno previamente conhecidas do sistema em estudo não são suficientes para estabelecer um equacionamento bemposto. Tal situação ocorre com freqüência quando as informações disponíveis são originadas de dados medidos ou condições que se deseja alcançar. Esses problemas podem ser interpretados como uma análise inversa de problemas convencionais em que apenas uma condição de contorno é imposta em cada fronteira do sistema. Em projetos de iluminação de interiores, nas áreas de trabalho são especificados tanto o fluxo luminoso (diretamente) quanto o poder emissivo luminoso (indiretamente); as fontes luminosas não possuem qualquer condição prescrita. O objetivo do projeto de iluminação é determinar a posição e o poder luminoso das lâmpadas para satisfazer à condição de iluminação nas áreas de trabalho. Projetos inversos são tipicamente formulados por um sistema de equações mal-condicionado, exigindo métodos especiais de solução, ou regularização, para a obtenção de repostas aproximadas, porém de utilidade prática. A técnica de projetos inversos tem sido bem-sucedida em problemas de transferência de calor radiante em cavidades com superfícies cinzas, ou seja, com propriedades radiantes independentes do comprimento de onda. O presente trabalho, além de estender a técnica inversa para a solução de problemas de radiação luminosa, levando em conta a eficácia luminosa da visão humana, considera superfícies não-cinzas. Neste caso, o problema é descrito por um sistema de equações não-lineares, por não se conhecer a quantidade de energia luminosa em cada região do espectro de radiação. A não-linearidade é contornada pelo emprego de um método iterativo que define a temperatura necessária nas fontes luminosas para atender à condição calculada pelo método inverso, distribuindo essa energia coerentemente nas bandas espectrais. O presente trabalho apresenta também uma compilação de informações relevantes aos projetos de iluminação, promovendo uma integração dessa área do conhecimento com os conceitos clássicos de radiação térmica. É apresentada uma modelagem matemática da visão humana bem como uma modelagem do comportamento de lâmpadas incandescentes, de modo a aplicar as relações de radiação em projetos de iluminação. A regularização do sistema de equações é realizada pelo método TSVD (Truncated Singular Value Decomposition). A metodologia sugerida, aplicada a uma cavidade retangular tridimensional, conduz a resultados satisfatórios, sendo capaz de atingir a convergência na distribuição de energia luminosa nas bandas espectrais em apenas três iterações. Isso demonstra que a metodologia é estável, pois nenhum tipo de relaxação foi necessária. Alguns casos práticos são resolvidos, podendo-se evidenciar a influência das propriedades espectrais das superfícies não-cinzas na potência luminosa das fontes. / In several analyses in engineering, the set of known boundary conditions for the case under study does not establish a well posed system of equations. Such situation often occurs when the available information comes from measured data or conditions which are desired to be achieved. These problems can be interpreted as inverse analysis of conventional problems in which only one condition is imposed on the boundaries of the system. The illumination design of environments: in the working areas, both the luminous flux (directly) and the luminous emissive power (indirectly) are specified, while the light sources are left unconstrained. The objective of the illumination design is to determine the position and the luminous power of the lamps that are capable of providing the required illumination in the working area. Inverse designs are typically formulated by an ill-conditioned system of equations, which requires special methods of solution, or regularization, to achieve approximated, but of practical use, answers. The inverse design technique has proved a successful method to tackle the problem of radiative heat transfer in enclosures with gray walls, that is, having radiative properties that are independent of the wavelength. This work, in addition to extending the inverse technique to illumination, taking into account the luminous efficacy of the human eye, considers non-gray walls. In this case, the problem is described by a system of non-linear equations, since the amount of the luminous energy in the spectral bands is not known a priori. The non-linearity is dealt with the use of an iterative method to determine the temperatures of the illumination sources that satisfy the prescribed conditions on the working area, at the same time leading to a consistent distribution of the luminous energy in the bands. This work also presents a compilation of the relevant information for the illumination design, integrating this area of knowledge to the well established concepts of thermal radiation. The mathematical modeling of the human vision as well as of the behavior of incandescent lamps are presented and incorporated into the inverse analysis. The regularization of the system of equations is carried out by the TSVD (Truncated Singular Value Decomposition) method. The proposed methodology is applied to a three-dimensional enclosure, and leads to satisfactory results after only three iterations, which demonstrates the stability of the method. A few practical cases are solved, showing the influence of the spectrally dependent properties of the non-gray walls on the luminous source powers.
|
7 |
Análise inversa com uso de algoritmo genético para localização de tumores de pele discretizados em elementos de contorno com reciprocidade dual / Inverse analysis using genetic algorithm for localisation of skin tumours using the boundary element method with dual reciprocityBueno, Fabrício Ribeiro 13 August 2008 (has links)
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2008. / Submitted by Jaqueline Oliveira (jaqueoliveiram@gmail.com) on 2008-11-24T18:22:35Z
No. of bitstreams: 1
DISSERTACAO_2008_FabricioRibeiroBueno.pdf: 803776 bytes, checksum: 9bd97cb35afa50e5a3e22613d0de0cc6 (MD5) / Made available in DSpace on 2008-11-24T18:22:35Z (GMT). No. of bitstreams: 1
DISSERTACAO_2008_FabricioRibeiroBueno.pdf: 803776 bytes, checksum: 9bd97cb35afa50e5a3e22613d0de0cc6 (MD5) / Neste trabalho, assim como em Partridge e Wrobel (2007), o Método dos Elementos de
Contorno com Reciprocidade Dual é associado a um Algoritmo Genético, gerando uma
ferramenta que, através de uma distribuição de temperatura medida na superfície da pele,
calcula, por um processo inverso, a localização e o tamanho de um tumor.
O método parte de uma série de cadeias de binários aleatórios que representam cada um
uma possível solução do problema armazenando a posição do centro e o tamanho do
tumor. Esses números binários são chamados de cromossomos que são melhorados a cada
geração por um processo numérico de cruzamento e mutação, imitando o processo
biológico de reprodução com seleção natural.
O Método da Reciprocidade Dual aqui foi implementado para a função de aproximação 3 r
com termos lineares acrescidos 1, x e y. O que não quer dizer que não possam ser
utilizadas outras funções.
Foram melhorados os resultados do trabalho anterior (Partridge e Wrobel, 2007), além de
modificar as rotinas, tornando-as capazes de localizar tumores com geometria circular.
Também são apresentados resultados para exemplos com condições de contorno
convectivos e com ruído, como é o caso para problemas reais.
Os resultados para os diferentes tamanhos, localizações, geometrias e condições de
contorno foram satisfatórios, comprovando a eficiência do processo inverso de Algoritmos
Genéticos com aplicação de Método dos Elementos de Contorno. _______________________________________________________________________________________ ABSTRACT / Here, as in Partridge and Wrobel (2007), the Boundary Element Method with Dual
Reciprocity is associated with a genetic algorithm, creating a tool that using a distribution
of temperature measured on the surface of the skin, estimates by an inverse process the
localization and size of a tumor.
The method starts from a series of random binary strings, each representing a possible
solution of the problem containing the position of the centre and size of the tumor. These
binary numbers are called chromosomes and they are improved at each generation using a
numerical process of crossover and mutation, like the biological process of reproduction
with natural selection.
The Dual Reciprocity Method has been implemented here for the approximation function
3 r with augmentation 1, x and y. That does not mean that other functions can not be used.
The results of previous work (Partridge and Wrobel, 2007) were improved upon and the
routines were changed, making it possible to find tumors with circular geometry. Results
are also presented where examples with convective boundary conditions with noise were
considered as in the case in real problems.
The results for different sizes, positions, geometries and boundary conditions were
satisfactory, showing the efficiency of the inverse process using Genetic Algorithms with
application of the Boundary Elements Method.
|
8 |
Análise inversa da transferência de calor em Soldagem por Fricção Linear utilizando o método de Otimização Extrema Generalizada / Inverse analisys of heat transfer in friction stir welding using the generalized extremal optimization methodCenteno, Felipe Roman January 2008 (has links)
A estimativa de parâmetros térmicos relacionados à Soldagem por Fricção Linear (também conhecida como Soldagem por Fricção e Mistura Mecânica) de uma placa de alumínio AA 2195- T8 é estudada nesta dissertação. A determinação dos parâmetros é tratada como um problema de otimização, no qual a função objetivo corresponde a uma função erro entre temperaturas medidas numericamente e temperaturas calculadas, para certos valores da taxa de calor gerada pela fricção, do coeficiente de transferência calor por convecção natural e do coeficiente de transferência de calor entre a placa e a base de suporte. A distribuição transiente de temperaturas sobre a placa é determinada pela solução da equação da condução de calor tridimensional transiente, a qual é resolvida pelo método dos volumes finitos. A minimização da função objetivo é realizada com o auxílio do algoritmo Otimização Extrema Generalizada (GEO), um método evolucionário que pode lidar com diversos tipos de problemas de otimização. A avaliação da sensibilidade da leitura de temperatura é feita com relação ao posicionamento dos sensores, com o objetivo de descobrir as melhores posições para aquisição de dados, e também a determinação do parâmetro t (parâmetro utilizado no método GEO que deve ser ajustado para cada tipo de problema) que melhor se adapta para cada um dos conjuntos de medição de temperatura. Além disso, realiza-se um estudo no qual é analisado um caso em que a fonte de calor possui forma de distribuição desconhecida, sem a utilização de equações para a sua descrição, desta maneira mais parâmetros devem ser estimados pela análise inversa, assim o processo de otimização é mais complexo (cinco valores de taxa de calor e dois coeficientes de transferência de calor, ao invés de uma taxa de calor e dois coeficientes). Ainda, para simular medições de dados reais, os valores de temperatura obtidos a partir da solução numérica para valores específicos da taxa de calor e dos coeficientes de transferência de calor são perturbados com ruídos de acordo com desvios-padrão típicos dessa forma de medição. Este trabalho demonstra que a aproximação inversa proposta pode ser um modo muito efetivo para avaliar e predizer os parâmetros que governam o processo de transferência de calor na Soldagem por Fricção Linear, um importante passo para o seu controle em tempo real. / The estimation of thermal parameters related to Friction Stir Welding of a AA 2195-T8 plate is studied in this dissertation. The determination of the parameters is carried out by means of an optimization problem, in which the objective function corresponds to an error function between the numerically measured temperature and the temperature computed for each estimated values of the heat rate input, the heat transfer coefficient on the bottom surface, and the natural convection heat transfer coefficient. The time-dependent temperature distribution on the plate is determined by the solution of the three-dimensional transient state conduction equation, which is solved by the control-volum method. The minimization of the objective function is accomplished with the aid of the Generalized Extremal Optimization (GEO) method, an evolutionary method that can deal with several types of optimization problems. The evaluation of the temperature reading sensitivity is carried out, in relation to the readers locations on the plate, in order to determine the best positions that can be used to acquire datas, and the determination of the t parameter (this parameter is used in the GEO method and it must be adjusted for each type of problem) that best fits with each one of the temperature readers assembly, allowing the determination of the best temperature readers assembly. In addition, it is executed a study that considers a case where the heat rate input has unknown profile distribution, without using equations for its description, in this manner more parameters have to be estimated by the inverse analysis, so the optimization process is more complicated (five heat rate inputs and two heat transfer coefficients, instead of one heat rate input and two heat transfer coefficients). Furthermore, to simulate real-data measurements, the temperature inputs, obtained from a numerical solution for specific values of the heat rate input and the heat transfer coefficients, were perturbed with noises according to the standard deviation of the measurement procedure. This work demonstrates that the proposed inverse approach can be a very effective way to evaluate and predict the parameters that govern the heat transfer process in Friction Stir Welding, an important step to real-time control of this process.
|
9 |
Projeto inverso em cavidades radiantes com superfícies não-cinzas / Inverse design of radiative heat transfer enclosures with nongray surfacesHoffmann, Roger Schildt January 2008 (has links)
Esta dissertação de mestrado tem por objetivo apresentar uma metodologia de solução inversa para cavidades compostas por superfícies não-cinzas, com transferência de calor por radiação. As superfícies da cavidade têm emissividades divididas em bandas onde são consideradas constantes. Na superfície superior, estão localizados os aquecedores, enquanto na superfície inferior, a superfície de projeto, é imposta uma condição prescrita de aquecimento, com temperatura e fluxo de calor preestabelecido. As demais superfícies são paredes na temperatura ambiente. O aquecedor não tem nenhuma condição de contorno, devendo ser determinada a distribuição do fluxo de calor (e, conseqüentemente de temperatura) que atenda as condições impostas na superfície de projeto. Essa formulação em problemas de transferência de calor por radiação é descrita por uma integral de Fredholm de primeira espécie, cuja discretização resulta em um sistema de equações mal-condicionado que deve ser resolvida por métodos de regularização. Neste trabalho, adotou-se o método TSVD (truncated singular value decomposition). Um aspecto deste problema é que apesar de o fluxo radiante total na superfície de projeto ser conhecido, sua distribuição em cada banda é desconhecida. Para resolver isto é proposto um cálculo iterativo onde a distribuição do fluxo de calor é estimada, e a correção é baseada na determinação do poder emissivo total para cada elemento aquecedor, a partir dos poderes emissivos obtidos em cada banda. / This dissertation has the objective of presenting an inverse method for the solution of nongray enclosures, with radiative heat transfer. The surfaces of the enclosure have the hemispherical spectral emissitivities divided in bands, where the emissivities can be considered constant. For the test case, the heaters are located on the top of the enclosure, while the design surface, where both the temperature and the heat flux are imposed, is located on the bottom of the enclosure. The remaining surfaces represent the wall of the enclosure, having a prescribed temperature. The heaters have no boundary condition, and both temperature and heat flux must be determined. This specific formulation in radiative heat transfer problems is described by a Fredholm integral of first kind, which can be solved by a regularization method as TSVD among others. One aspect of this problem is that, although the total heat flux of the design surface is known, the partial heat fluxes of the spectral bands are not. An iterative process is proposed where the initial heat flux distribution is guessed, and the correction is based on the determination of the total emissive power for each heating element, from the partial emissive powers.
|
10 |
Análise inversa com uso de algoritmo genético para localização de tumores de pele em três dimensões utilizando elementos de contorno com reciprocidade dual / Inverse analysis using a genetic algorithm for localisation of skin tumours using dual reciprocity boundary element methodBueno, Fabrício Ribeiro 24 January 2012 (has links)
Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2012. / Submitted by Albânia Cézar de Melo (albania@bce.unb.br) on 2012-05-11T13:04:41Z
No. of bitstreams: 1
2012_FabricioRibeiroBueno.pdf: 2030304 bytes, checksum: 24ad238acacd23cede1e2af2ac7eb74b (MD5) / Approved for entry into archive by Marília Freitas(marilia@bce.unb.br) on 2012-05-11T14:28:37Z (GMT) No. of bitstreams: 1
2012_FabricioRibeiroBueno.pdf: 2030304 bytes, checksum: 24ad238acacd23cede1e2af2ac7eb74b (MD5) / Made available in DSpace on 2012-05-11T14:28:37Z (GMT). No. of bitstreams: 1
2012_FabricioRibeiroBueno.pdf: 2030304 bytes, checksum: 24ad238acacd23cede1e2af2ac7eb74b (MD5) / Neste trabalho, o Método dos Elementos de Contorno com Reciprocidade Dual será
associado a um Algoritmo Genético, gerando uma ferramenta que, através de uma distribuição de temperatura medida na superfície da pele, calcula-se, por um processo inverso, a localização e o tamanho de um tumor. Foi desenvolvido um sistema para simulação computacional, com modelagem tridimensional, de problemas de transferência de calor em meios biológicos baseado na
solução da equação biotérmica de Pennes. A técnica destina-se a previsões de temperatura, visualização do comportamento e a práticas de diagnósticos de tumores.
A equação biotérmica é aqui resolvida com o uso Método dos Elementos de Contorno com
Reciprocidade Dual. O Método da Reciprocidade Dual foi implementado com o uso da função de aproximação com melhor resultado para modelos tridimensionais r f + = 1 associada a funções acrescidas lineares 1, x , y e z.
Devido ao fato de a função objetivo, que é resolvida inversamente, envolver uma função de MEC com MRD, o Algoritmo Genético se torna um processo lento. Assim foi necessário desenvolver funções baseadas em histórico com varredura de regiões a fim de deixar a ferramenta rápida e precisa. Os resultados dos 27 exemplos apresentados envolvem ainda casos considerando condições de contorno do tipo convectivos e radiativos além de considerar a imprecisão dos equipamentos de leitura. ______________________________________________________________________________ ABSTRACT / Here the dual reciprocity boundary element method is associated with a genetic algorithm producing a tool that through a distribution of temperatures measured on the skin surface calculates, by an inverse method, the localization and size of a tumour. A system was developed for the computational simulation of problems of heat transfer in a biological medium in three dimensions based on the solution of the Pennes Bioheat Equation. The technique is to be used for forecasting temperature, visualizing the behavior of the medium and for use in the diagnosis of tumours.
The bioheat equation is solved here with the use of the Dual Reciprocity Boundary Element Method. The Dual Reciprocity Method was implemented using the approximating function which produced the best result for the 3D models which was 1+r with the augmentation functions 1, x, y, z. Due to the fact that the objective function, which is solved inversely, uses DRBEM, the
genetic algorithm becomes slow. It was thus necessary to develop functions based on the history of previous solutions in order for the method to be faster and more acceptable. The results of the 27 examples presented involve cases considering convective and radiation boundary conditions in addition to imprecise equipment readings.
|
Page generated in 0.0509 seconds