• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 4
  • 1
  • Tagged with
  • 44
  • 44
  • 14
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The bovine spliceosomal U1 small nuclear ribonucleoprotein particle : a study of its autoantigenicity and biochemical properties : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University, Palmerston North, New Zealand

Robertson, Andrew James January 2006 (has links)
Despite individual autoimmune diseases being relatively rare, collectively these diseases afflict 8 % of the population according to the American Autoimmune Related Diseases Association. With over 75 % of those affected being women, autoimmune disease has been recognised, by the World Health Organisation and the US National Institutes of Health, as a major global women's health issue. One third of autoimmune sufferers have a rheumatological disorder, which commonly affect the joints, muscle, skin, salivary glands and kidneys. Antibodies against nuclear antigens are a serological hallmark of these diseases. Detection of these antibodies is used in the diagnosis and prognosis of the disease. The sensitivity and specificity of the test, of which the antigen is a key component, is pivotal to correct disease diagnosis and management. The relationship between circulating autoantibodies and the target antigen is complex. Improving the effectiveness of a test to assist in diagnosis and prognosis comes from characterisation and understanding these complex relationships. This thesis compares bovine spliceosomal U1 small nuclear ribonucleoprotein particle (U1 snRNP) complex with its human equivalent, and examines the validity of using this bovine derived autoantigen in the diagnosis of the human autoimmune diseases, systemic lupus erythematosus and mixed connective tissue disease. Differences between bovine and human U1 snRNP composition were characterised using a combination of electrophoretic, immunoassay and mass spectrometry techniques. Although the U1C protein could not be identified in bovine U1 snRNP, all other specificities were present. U1A remained intact, whilst the U1 snRNP specific 68K protein was dephosphorylated and a large C-terminal domain was removed, such that 68K migrated as a 30-36 kDa cluster on SDS-PAGE. Bovine SmD proteins, present in U1 and non-U1 snRNPs, were unaffected, whereas, SmB'/B was truncated to a 12 kDa peptide, which interestingly, was no longer reactive with anti-RNP sera in western blot. The recognition of human SmB'/B protein by anti-RNP sera in western blot was further examined. A technique was developed to immunoaffinity purify tryptic digests of SmB'/B which could then be analysed by mass spectrometry. Interestingly, the human replication element protein (HREP) was tentatively identified, rather than SmB'/B as expected. It may be possible, therefore, that anti-RNP sera may be reacting with a protein other than SmB'/B. To examine the contribution of the individual U1 snRNP proteins to anti-RNP and anti-Sm sera reactivities, a method was developed to dissociate bovine U1 snRNP and to purify the individual component antigens. It was demonstrated both empirically and through anecdotal feedback from a commercial diagnostic kit producer that patient sera respond better to purified Sm-free 68K than the recombinant 68K antigen. The effect of commercial processing of bovine thymus, the source for U1 snRNP antigen, was determined. In this study, variables that may be controlled during processing, such as temperature, protease activity and pH, were investigated. Hydrolysis of the intact human 68K protein with the necrotic protease, cathepsin L, produced 38 and 25 kDa fragments, whereas exposure to ambient temperature and low pH produced 32 kDa peptide fragments similar to those observed in purified bovine 68K. It was therefore proposed that 68K protein may undergo autocatalytic hydrolysis during necrotic cell death. Thorough characterisation of the bovine spliceosomal U1 snRNP proteins has not only validated their use as diagnostic reagents in autoimmune disease but also provided some insight into the inactivation of U1 snRNP function during early cell death.
22

Studies on the biosynthesis of indole-3-acetic acid in tomato shoots

Cooney, Terrence Patrick January 1989 (has links)
The relative contributions of the three main intermediates of indole-3-acetic acid (IAA) biosynthesis from L-tryptophan (L-Trp); indole-3-pyruvate (IPyA), tryptamine (TNH2) and indole-3-acetaldoxime (IAOX), were investigated in vivo in tomato shoots. Initially, L-Trp, D-Trp, IPyA, TNH2 and IAA were purified from shoots, identified by full-scan mass spectrometry and their concentrations measured using gas chromatography with an electron capture detector. High specific activity [5-3H]IAOX and [5-3H]IPyA were synthesized from L-[5-3H]Trp and used as internal standards. Purification of endogenous IPyA was enabled by forming a stable pentafluorobenzyl oxime derivative in the crude plant extract. The respective endogenous concentrations of L-Trp, D-Trp, TNH2, IPyA and IAA were found to be 2,520, 103, 146.3, 5.9 and 8.5 ng g-1 f. wt. However, IAOX could not be identified as a natural constituent of tomato shoots by full-scan GC-MS. Secondly, incubation of tomato shoots for 6, 10 and 21 h in 30% 2H2O was used as a means of labelling IAA and its putative precursors in vivo. L-Trp, D-Trp, TNH2, IPyA and IAA were then extracted and purified and the 2H content measured by combined gas chromatography-mass spectrometry. These indole compounds were labelled rapidly with up to four 2H atoms. Direct comparison of the number and the amount of 2H atoms incorporated (pattern) was obtained from the mass spectral data on the common m/z 130 ion and its isotope peaks. IAA and L-Trp demonstrated an increase in 2H label with up to 17% and 21% of their molecules labelled at 10 h respectively. This was followed by a significant decrease in 2H label at 21 h to 12% for both L-Trp and IAA. This decrease in 2H label was attributed to an increase in protein catabolism, following shoot excision, resulting in the dilution of free L-Trp pool(s) with unlabelled L-Trp from which IAA is biosynthesized. This is reflected in the observed 1.6 to 1.8 fold increase of free L-Trp from 10 to 21 h. In contrast, tryptamine demonstrated a continual increase in 2H label with an average of 8, 20 and 28% of the molecules labelled at 6, 10 and 21 h respectively, suggesting that TNH2 and IAA were synthesized from separate Trp pools. In addition, the relatively slow rate at which 2H is incorporated into tryptamine would not be sufficient to account for the rate at which IAA becomes labelled. However, IPyA demonstrated a rapid increase in 2H with 22% and 37% of its molecules labelled at 6 and 10 h respectively. From the rate at which IPyA was labelled with 2H and the concentration of IPyA in tomato shoots a rate of synthesis for IPyA in tomato shoots was estimated which was sufficient to provide most of the shoot IAA requirements. Furthermore, the extent to which IAA and IPyA were labelled relative to that of total L-Trp would imply that a smaller more rapidly metabolised pool(s) of L-Trp was the precursor of these compounds. The rate and extent that D-Trp was labelled was consistently less than that of IAA precluding it as a possible precursor of IAA. These results indicate that in tomato shoots IAA is biosynthesized from a rapidly metabolized sub-pool(s) of L-trptophan predominantly via IPyA.
23

Studies on the biosynthesis of indole-3-acetic acid in tomato shoots

Cooney, Terrence Patrick January 1989 (has links)
The relative contributions of the three main intermediates of indole-3-acetic acid (IAA) biosynthesis from L-tryptophan (L-Trp); indole-3-pyruvate (IPyA), tryptamine (TNH2) and indole-3-acetaldoxime (IAOX), were investigated in vivo in tomato shoots. Initially, L-Trp, D-Trp, IPyA, TNH2 and IAA were purified from shoots, identified by full-scan mass spectrometry and their concentrations measured using gas chromatography with an electron capture detector. High specific activity [5-3H]IAOX and [5-3H]IPyA were synthesized from L-[5-3H]Trp and used as internal standards. Purification of endogenous IPyA was enabled by forming a stable pentafluorobenzyl oxime derivative in the crude plant extract. The respective endogenous concentrations of L-Trp, D-Trp, TNH2, IPyA and IAA were found to be 2,520, 103, 146.3, 5.9 and 8.5 ng g-1 f. wt. However, IAOX could not be identified as a natural constituent of tomato shoots by full-scan GC-MS. Secondly, incubation of tomato shoots for 6, 10 and 21 h in 30% 2H2O was used as a means of labelling IAA and its putative precursors in vivo. L-Trp, D-Trp, TNH2, IPyA and IAA were then extracted and purified and the 2H content measured by combined gas chromatography-mass spectrometry. These indole compounds were labelled rapidly with up to four 2H atoms. Direct comparison of the number and the amount of 2H atoms incorporated (pattern) was obtained from the mass spectral data on the common m/z 130 ion and its isotope peaks. IAA and L-Trp demonstrated an increase in 2H label with up to 17% and 21% of their molecules labelled at 10 h respectively. This was followed by a significant decrease in 2H label at 21 h to 12% for both L-Trp and IAA. This decrease in 2H label was attributed to an increase in protein catabolism, following shoot excision, resulting in the dilution of free L-Trp pool(s) with unlabelled L-Trp from which IAA is biosynthesized. This is reflected in the observed 1.6 to 1.8 fold increase of free L-Trp from 10 to 21 h. In contrast, tryptamine demonstrated a continual increase in 2H label with an average of 8, 20 and 28% of the molecules labelled at 6, 10 and 21 h respectively, suggesting that TNH2 and IAA were synthesized from separate Trp pools. In addition, the relatively slow rate at which 2H is incorporated into tryptamine would not be sufficient to account for the rate at which IAA becomes labelled. However, IPyA demonstrated a rapid increase in 2H with 22% and 37% of its molecules labelled at 6 and 10 h respectively. From the rate at which IPyA was labelled with 2H and the concentration of IPyA in tomato shoots a rate of synthesis for IPyA in tomato shoots was estimated which was sufficient to provide most of the shoot IAA requirements. Furthermore, the extent to which IAA and IPyA were labelled relative to that of total L-Trp would imply that a smaller more rapidly metabolised pool(s) of L-Trp was the precursor of these compounds. The rate and extent that D-Trp was labelled was consistently less than that of IAA precluding it as a possible precursor of IAA. These results indicate that in tomato shoots IAA is biosynthesized from a rapidly metabolized sub-pool(s) of L-trptophan predominantly via IPyA.
24

Studies on the biosynthesis of indole-3-acetic acid in tomato shoots

Cooney, Terrence Patrick January 1989 (has links)
The relative contributions of the three main intermediates of indole-3-acetic acid (IAA) biosynthesis from L-tryptophan (L-Trp); indole-3-pyruvate (IPyA), tryptamine (TNH2) and indole-3-acetaldoxime (IAOX), were investigated in vivo in tomato shoots. Initially, L-Trp, D-Trp, IPyA, TNH2 and IAA were purified from shoots, identified by full-scan mass spectrometry and their concentrations measured using gas chromatography with an electron capture detector. High specific activity [5-3H]IAOX and [5-3H]IPyA were synthesized from L-[5-3H]Trp and used as internal standards. Purification of endogenous IPyA was enabled by forming a stable pentafluorobenzyl oxime derivative in the crude plant extract. The respective endogenous concentrations of L-Trp, D-Trp, TNH2, IPyA and IAA were found to be 2,520, 103, 146.3, 5.9 and 8.5 ng g-1 f. wt. However, IAOX could not be identified as a natural constituent of tomato shoots by full-scan GC-MS. Secondly, incubation of tomato shoots for 6, 10 and 21 h in 30% 2H2O was used as a means of labelling IAA and its putative precursors in vivo. L-Trp, D-Trp, TNH2, IPyA and IAA were then extracted and purified and the 2H content measured by combined gas chromatography-mass spectrometry. These indole compounds were labelled rapidly with up to four 2H atoms. Direct comparison of the number and the amount of 2H atoms incorporated (pattern) was obtained from the mass spectral data on the common m/z 130 ion and its isotope peaks. IAA and L-Trp demonstrated an increase in 2H label with up to 17% and 21% of their molecules labelled at 10 h respectively. This was followed by a significant decrease in 2H label at 21 h to 12% for both L-Trp and IAA. This decrease in 2H label was attributed to an increase in protein catabolism, following shoot excision, resulting in the dilution of free L-Trp pool(s) with unlabelled L-Trp from which IAA is biosynthesized. This is reflected in the observed 1.6 to 1.8 fold increase of free L-Trp from 10 to 21 h. In contrast, tryptamine demonstrated a continual increase in 2H label with an average of 8, 20 and 28% of the molecules labelled at 6, 10 and 21 h respectively, suggesting that TNH2 and IAA were synthesized from separate Trp pools. In addition, the relatively slow rate at which 2H is incorporated into tryptamine would not be sufficient to account for the rate at which IAA becomes labelled. However, IPyA demonstrated a rapid increase in 2H with 22% and 37% of its molecules labelled at 6 and 10 h respectively. From the rate at which IPyA was labelled with 2H and the concentration of IPyA in tomato shoots a rate of synthesis for IPyA in tomato shoots was estimated which was sufficient to provide most of the shoot IAA requirements. Furthermore, the extent to which IAA and IPyA were labelled relative to that of total L-Trp would imply that a smaller more rapidly metabolised pool(s) of L-Trp was the precursor of these compounds. The rate and extent that D-Trp was labelled was consistently less than that of IAA precluding it as a possible precursor of IAA. These results indicate that in tomato shoots IAA is biosynthesized from a rapidly metabolized sub-pool(s) of L-trptophan predominantly via IPyA.
25

DEVELOPMENT OF DATA-DRIVEN METHODS FOR MASS SPECTROMETRY IMAGING

Hang Hu (12883058) 16 June 2022 (has links)
<p>Mass spectrometry imaging (MSI) is a label-free technique that enables mapping hundreds of molecules in biological samples with high sensitivity and molecular specificity. MSI experiments usually sample a virtual grid of pixels on a sample surface. A full mass spectrum is acquired at each pixel. Typically, a single MSI experiment generates hundreds of thousands of spectra, each containing thousands of molecular features. The size of MSI data keeps increasing with MSI technology improvements in spatial resolution and molecular coverage. Subsequent interpretation of the vast and complex MSI data is a major bottleneck for deriving biological conclusions from the experimental results. In chapter 1, I review recently emerging computational methods in MSI for data analysis and “smart” experiments. I also provide a outlook for a future paradigm shift in MSI with transformative computational methods.<br> </p> <p>In my research, I have developed several approaches for the analysis and mining of the MSI data in a data-driven manner. In chapter 2, I introduce a vendor-neutral data processing pipeline for visualizing ion images from MSI data, which supports both standard and unconventional MSI acquisition strategies. In chapter 3, a spatial segmentation method is described. This method combines matrix factorization and manifold learning to enable the identification of distinct cells or tissue subregions in an unsupervised manner. In chapter 4, I describe a self-supervised approach for identifying and clustering colocalized molecules using contrastive learning, which helps analyze molecular pathways in biological samples. In chapter 5, I introduce a precise image registration method for studying individual fibers in mouse muscle tissue using multimodal MSI and immunofluorescence imaging. The locations of different types of muscle fibers obtained from immunofluorescence images are registered to MSI space, which enables biomarker discovery based on spatially resolved metabolomics and lipidomics data.</p> <p><br> Computational methods also provide powerful strategies for enhancing MSI capabilities, such as throughput, molecular coverage, and specificity. In chapter 6, I describe a “smart” sampling method for enhancing the experimental throughput of MSI. In collaboration with Prof. Dong Hye Ye’s group at Marquette University, we have developed a deep learning algorithm for sparse sampling (DLADS), which dynamically estimates molecularly informative tissue locations and guides sampling in MSI experiments. We coupled DLADS with nanospray desorption electrospray ionization (nano DESI) MSI platform through software and hardware integration. This approach preferentially samples informative tissue locations and reconstructs high-fidelity\ ion images with sparse MSI data, which improves the throughput of nano-DESI MSI experiments by 2.3-fold.<br>  </p>
26

DEVELOPMENT OF GAS-PHASE ION/ION REACTIONS FOR CHARACTERIZING PROTEIN AND PEPTIDE IONS

Anthony Marcel Pitts-Mccoy (11024205) 23 July 2021 (has links)
<p>Mass spectrometry-based gas-phase ion/ion reactions have grown considerably in the last decade. Their applications range from structural elucidation, instrument calibration, and spectral deconvolution. One field that has been amenable to these methods is proteomic studies. Proteins and peptides have grown as candidates for biomarkers and vaccines. Proteins are vastly different with mass ranging from 1 kDa to well over 1 MDa and various types of post translational modifications. The structural heterogeneity that proteins can exhibit demonstrates the need for high resolution mass spectrometry methods. The combination of native mass spectrometry and soft ionization sources allow for preservation of structures seen in solution as analytes enter the gas phase. By developing methods that probe these structures, the information gathered can be related to the native structures in solution. Here I show, gas phase ion/ion reactions that can be utilized for location of salt bridge structures, gas-phase crosslinking of homo and heterodimer protein complexes, and mass determination of large (>800 kDa) protein complexes. These methods allow for greater control, faster data acquisition, and minimal sample preparation. These methods were developed on modified Sciex TripleTOF 5600 and 4000 QTRAP tandem mass spectrometers.</p>
27

ION MOBILITY AND GAS-PHASE COVALENT LABELING STUDY OF THE STRUCTURE AND REACTIVITY OF GASEOUS UBIQUITIN IONS ELECTROSPRAYED FROM AQUEOUS AND DENATURING SOLUTIONS

Veronica Vale Carvalho (11820650) 07 January 2022 (has links)
Gas-phase ion/ion covalent modification was coupled to ion mobility/mass spectrometry analysis to directly correlate the structure of gaseous ubiquitin to its solution structures with selective covalent structural probes. Collision cross section (CCS) distributions were measured prior to ion/ion reactions to ensure the ubiquitin ions were not unfolded when they were introduced to the gas phase. Ubiquitin ions were electrosprayed from aqueous and methanolic solutions yielding a range of different charge states that were analyzed by ion mobility and time-of-flight mass spectrometry. Aqueous solutions stabilizing the native state of ubiquitin generated folded ubiquitin structures with CCS values consistent with the native state. Denaturing solutions favored several families of unfolded conformations for most of the charge states evaluated. Gas-phase covalent labeling via ion/ion reactions was followed by collision induced dissociation of the intact, labeled protein to determine which residues were labeled. Ubiquitin 5+ and 6+ electrosprayed from aqueous solutions were covalently modified preferentially at the lysine 29 and arginine 54 residues, indicating that elements of secondary structure as well as tertiary structure were maintained in the gas phase. On the other hand, most ubiquitin ions produced in denaturing conditions were labeled at various other lysine residues, likely due to the availability of additional sites following methanol and low pH-induced unfolding. These data support the conservation of ubiquitin structural elements in the gas phase. The research presented here provides the basis for residue-specific characterization of biomolecules in the gas phase
28

DEVELOPMENT AND APPLICATION OF A QUADRUPOLE TIME-OF-FLIGHT MASS SPECTROMETER FOR THE ANALYSIS OF SYNTHETIC POLYMERS, PROTEINS, AND PROTEIN COMPLEXES

Jay Sharma Bhanot (12988718) 01 July 2022 (has links)
<p> In the last thirty years, ion/ion reactions have been developed and applied to answer increasingly difficult analytical problems across a variety of industries. This requires the constant development of instrumentation that can enable work with the analyte modalities of highest impact. Such analytes have become increasingly high in molecular weight precluding many analysis techniques, such as mass spectrometry. In this work, a commercial quadrupole time-of-flight mass spectrometer was modified and adapted to support the analysis of high-mass bio-ions using ion/ion reactions. Using a highly modified instrument, novel capabilities and theory were developed around the analysis and detection of ions with <em>m/z</em> ratios as high as 400,000 <em>m/z</em> and 2.2 mDa. These capabilities enabled and benefitted the analysis of polymers, peptides, and proteins and in this work was demonstrated as an effective instrument a variety of applications. By using data generated on this apparatus, the rapid characterization of PS 80 samples using MATLAB programs to aide in peak identification, native ion parking, and novel ETD reagents were completed. Given the expanding role of biological systems in all areas of science, the development, characterization, and utilization of a highly versatile mass spectrometer is described herein.</p>
29

Phosphoproteomic strategies for protein functional characterization of phosphatases and kinases

Andrew G. DeMarco (17103610) 06 April 2024 (has links)
<p dir="ltr">Protein phosphorylation is a ubiquitous post-translational modification controlled by the opposing activities of protein kinases and phosphatases, which regulate diverse biological processes in all kingdoms of life. One of the key challenges to a complete understanding of phosphoregulatory networks is the unambiguous identification of kinase and phosphatase substrates. Liquid chromatography-coupled mass spectrometry (LC-MS/MS) and associated phosphoproteomic tools enable global surveys of phosphoproteome changes in response to signaling events or perturbation of phosphoregulatory network components. Despite the power of LC-MS/MS, it is still challenging to directly link kinases and phosphatases to specific substrate phosphorylation sites in many experiments. Here we described two methods for the LC-MS/MS-based characterization of protein phosphatases and kinases. The first is an <i>in-vitro</i> method designed to probe the inherent substrate specificity of kinase or phosphatases. This method utilizes an enzyme reaction with synthetic peptides, serving served as substrate proxies, coupled with LC-MS/MS for rapid, accurate high-throughput quantification of the specificity constant (<i>k</i><sub><em>cat</em></sub><i>/K</i><sub><em>M</em></sub>) for each substrate in the reaction and amino acid preference in the enzyme active site, providing insight into their cellular roles. The second couple’s auxin-inducible degradation system (AID) with phosphoproteomics for protein functional characterization. AID is a surrogate for specific chemical inhibition, which minimizes non-specific effects associated with long-term target perturbation. Using this system, we demonstrate-PP2A in complex with its B-subunit Rox Three Suppressor 1 (PP2A<sup>Rts1</sup>) contributes to the phosphoregulation of a conserved fungal-specific membrane protein complex called the eisosome. By maintaining eisosomes in their hypophosphorylated state, PP2A<sup>Rts1</sup> aids fungal cells in preserving metabolic homeostasis. This work demonstrates the power of mass spectrometry as a critical tool for protein functional characterization.</p>
30

<b>INSIGHTS INTO THE STRUCTURE, FUNCTION, AND INHIBITION OF SHIP1: A POTENTIAL THERAPEUTIC TARGET FOR THE TREATMENT OF LATE-ONSET ALZHEIMER’S DISEASE (LOAD)</b>

Adam K. Hamdani (17549148) 04 December 2023 (has links)
<p dir="ltr">Phosphatidylinositol phosphates (PIPs) and soluble inositol phosphates (IPs) serve as critical secondary messenger molecules that regulate cellular processes. The INPP5 family of phosphatases play an essential role in regulating levels of PIP-5’ and IP-5’ molecules. Src homology 2-containing-inositol phosphatases (SHIP), are a subgroup of the INPP5 family that consists of two members, SHIP1 and SHIP2. Both SHIP proteins have been identified to hydrolyze PI(3,4,5)P3 into PI(3,4)P2. Interestingly, the dysregulation of PI(3,4,5)P3 and SHIP proteins have been observed in multiple diseases, such as cancer, diabetes, and neurodegenerative disease. Recently, SHIP1 was identified as a potential risk factor for the development of Late-onset Alzheimer’s Disease (LOAD). Furthermore, knockdown and inhibition of SHIP1 using small-molecule inhibitors were shown to reduce phenotypes associated with LOAD. Taking these studies together suggests SHIP1 to be a potential therapeutic target for the treatment of LOAD.</p><p dir="ltr"><br></p><p dir="ltr">Despite SHIP1’s therapeutic potential, the development of specific small-molecule inhibitors that target SHIP1 has been challenging. One explanation for this challenge is that very little is known about the overall structure and function of SHIP1. In this thesis I will discuss in detail how we generated multiple SHIP1 constructs to improve our understanding of SHIP1’s overall structure and function in an <i>in vitro </i>setting.</p><p><br></p><p dir="ltr">Efficient protein production is essential for studying enzyme structure and function. The choice of expression system can impact protein yield and stability. The E. coli (BL21) and Baculovirus expression systems are two commonly used systems for protein production. While E. coli is cost-effective and can yield a large amount of protein, the Baculovirus system offers advantages in terms of protein folding and post-translational modifications. Using both systems to generate SHIP1 protein, we demonstrate that the Baculovirus system significantly enhances SHIP1 solubility for all generated constructs, making it the preferable choice for investigating the structure and function of SHIP1.</p><p><br></p><p dir="ltr">SHIP1, a 133 kDa protein, which comprises five established domains: an N-terminal Src Homolgy 2 (SH2) domain, 2.) a pleckstrin homology-related (PH) domain, 3.) an inositol phosphatase catalytic (Ptase) domain, 4.) a C2 domain, and 5.) a C-terminal domain containing proline-rich regions (PXXP) and tyrosine phosphorylated (NPXY) motifs. Despite their regulatory roles in phosphatase activity, protein-protein interactions, and membrane association, limited information is available about their structures and how they contribute SHIP1’s biochemical functions. In this study, we utilized baculovirus-expressed SHIP1 constructs to investigate the impact of each domain on macromolecular structure. Interestingly, a previously unrecognized domain within SHIP1 that directly impacts the enzyme's oligomeric state was identified. This work highlights that SHIP1's individual domains can significantly impact its overall structure and function, providing valuable insights for the development of potential therapeutics in the treatment of LOAD.</p><p><br></p><p dir="ltr">Accurate determination of phosphatase kinetics is vital for understanding the enzymatic activity and its potential involvement in disease. Using our baculovirus generated SHIP1 constructs, we employed in-vitro assays, including the malachite green (MG) and the 2-amino-6-mercapto-7-methylpurine riboside (MESG) coupled enzyme assays, to gain insight into SHIP1 kinetics. Results from the MG assay shows that SHIP1 can hydrolyze the PI(3,4,5)P3 diC8 substrate more efficiently than I(1,3,4,5)P4. Additionally, SHIP1’s PH domain was observed to increase the turnover of PI(3,4,5)P3 diC8. Furthermore, dimerization of SHIP1 was not observed to alter SHIP1 kinetics in any way. Lastly, no major differences in I(1,3,4,5)P4 kinetics were observed with the addition of SHIP1’s N-terminus. These results offer the first comprehensive biochemical characterization of SHIP1 across its substrates and N-terminal domains.</p><p><br></p><p dir="ltr">The development of potent and specific small-molecule inhibitors that target SHIP1 remains challenging. One potential cause for this challenge is that no structures of SHIP1 have been solved in complex with active compounds, making structure-based drug design impossible. In this study, we developed a covalent compound, <b>TAD-58547</b>, from a previously published fragment-based screen that was conducted on SHIP1’s Ptase and C2 domain. <b>TAD-58547 </b>was shown to effectively inhibited SHIP1's Ptase and C2 domains at modest potency. Using X-ray crystallography, this compound was observed to form a covalent interaction with a cysteine residue near the Phosphatase-C2 domain interface. Intriguingly, the inhibitor's potency was observed to be reduced in the presence of the SH2 domain. In addition to testing <b>TAD-58547</b> against our SHIP1 constructs, we investigated the effect of SHIP1’s N-terminus on the potency of a literature compound, <b>TAD-58616</b>. This compound was shown to inhibit all our tested constructs at low µM concentrations. Furthermore, using x-ray crystallography <b>TAD-58616 </b>was solved in complex with SHIP1’s Ptase and C2 domain. Intriguingly, density for <b>TAD-58616 </b>was shown to interact with a site previously identified from the fragment-based screen. While we initially determined this site to be a result of crystal packing, fragments bound to this site may have the potential to inhibit SHIP1. The work presented in this study reinforced the importance of testing inhibitors against physiological relevant forms of SHIP1, when developing potential therapeutics.</p><p><br></p><p dir="ltr">Lastly, new evidence has suggested that the binding of phosphorylated immunoreceptor tyrosine-based activation motifs (p-ITAM) and immunoreceptor tyrosine-based inhibitory motifs (p-ITIM) to SHIP1’s N-terminal SH2 domain is essential for its “Anchorage and Activation” at the plasma membrane (PM). With this model it is believed that SHIP1’s SH2 domain, places the phosphatase into an auto-inhibited state. Upon binding to immune receptor proteins and adaptor proteins that contain ITAM/ITIM sequences, SHIP1 becomes un-auto-inhibited, allowing it to efficiently hydrolyze PI(3,4,5)P3 embedded in the PM. While this model does support the notion that SHIP1 activity is mediated by its PM localization, our biophysical and biochemical characterization add another level of complexity to this regulatory event. Taking all these results together, we propose a novel model for SHIP1 called “Anchorage and Assist” and suggest innovative therapeutic strategies for targeting SHIP1.</p><p><br></p><p dir="ltr">In conclusion, this thesis highlights the importance of choosing suitable expression systems for efficient protein production. Additionally, it offers insight into SHIP1's regulatory mechanisms through the discovery of a novel domain impacting its oligomeric state. Furthermore, the accurate determination of SHIP1 kinetics enhances our understanding of this phosphatase and its potential implications in disease. Also, the identification and crystallization of a novel and previously determined inhibitor scaffolds in complex with SHIP1 increases our ongoing efforts to develop a small-molecule inhibitor that specifically targets SHIP1. Lastly, using recently published data, detailing SHIP1 PM localization and activation, we proposed a new model for SHIP1 activity and suggest novel therapeutic strategies for targeting SHIP1.</p>

Page generated in 0.1299 seconds