• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 18
  • 13
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 211
  • 211
  • 43
  • 40
  • 29
  • 27
  • 25
  • 20
  • 20
  • 18
  • 17
  • 15
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Cancer systems biology : is the devil in the glycolytic detail?

Blount, Kathryn January 2014 (has links)
An approach to investigating cancer that has recently seen resurgence of interest is the “Warburg effect”. Otto Warburg originally described the altered metabolism of cancer cells and identified that they exhibit an increase in glucose uptake and lactate production. This up-regulation of glycolytic flux and glucose transport is now associated with 90% of cancers. In order to improve the overall understanding of the “Warburg effect” two forms of systems biology have been implemented - comparative in vitro analysis of kinetic activities and dynamic modelling. In this analysis, human breast cancer cell lines MCF-7, MDA-MB-231 and T47D and a non transformed breast cell line MCF-10A were used to identify key similarities and differences in kinetic activities across the glycolytic pathway. Additionally, activities of key glycolytic enzymes hexokinase, pyruvate kinase and lactate dehydrogenase were compared under hypoxic conditions to further understand regulation of cancer cells. The most prominent feature that arose from comparing the kinetic activities of the three malignant and one non-malignant cell line is that each cell line has its own specific set of activities for glycolysis. This indicates that there are differences in regulation across the glycolytic pathway for each of these cell lines. This is of specific interest in the search for therapeutic targets. Further, we determined that despite the prominence of oncogenic HIF signalling activities of hexokinase, pyruvate kinase and lactate dehydrogenase were further modulated by growth under hypoxic conditions. Despite the lack of obvious distinct kinetic differences between the non-cancerous and cancerous cells lines some discernible differences are apparent when modelled in silico.
102

Studies of Enzyme Mechanism Using Isotopic Probes

Chen, Cheau-Yun 08 1900 (has links)
The isotope partitioning studies of the Ascaris suum NAD-malic enzyme reaction were examined with five transitory complexes including E:NAD, E:NAD:Mg, E:malate, E:Mg:malate, and E:NAD:malate. Three productive complexes, E:NAD, E:NAD:Mg, and E:Mg:malate, were obtained, suggesting a steady-state random mechanism. Data for trapping with E:14C-NAD indicate a rapid equilibrium addition of Mg2+ prior to the addition of malate. Trapping with 14C-malate could only be obtained from the E:Mg2+:14C-malate complex, while no trapping from E:14C-malate was obtained under feasible experimental conditions. Most likely, E:malate is non-productive, as has been suggested from the kinetic analysis. The experiment with E:NAD:malate could not be carried out due to the turnover of trace amounts of malate dehydrogenase in the pulse solution. The equations for the isotope partitioning studies varying two substrates in the chase solution in an ordered terreactant reaction were derived, allowing a determination of the relative rates of substrate dissociation to the catalytic reaction for each of the productive transitory complexes. NAD and malate are released from the central complex at an identical rate, equal to the catalytic rate.
103

ELUCIDATING THE HMG-COA REDUCTASE REACTION MECHANISM USING PH-TRIGGERED TIME-RESOLVED X-RAY CRYSTALLOGRAPHY

Vatsal Purohit (11825150) 18 December 2021 (has links)
<p>HMG-CoA reductase from Pseudomonas mevalonii (<i>Pm</i>HMGR) catalyzes the oxidation of mevalonate and mevaldyl-CoA to form HMG-CoA using CoA-SH and two NAD+ cofactors. While the enzyme has been used extensively as a drug target in humans to treat hypercholesterolemia, its pathway has also been found to be critical for the survival of antibiotic resistant gram-positive bacteria. Structural studies using non-productive and slow-substrate binary complexes as well as biochemical studies using half and full reactions led to the proposal that the conversion of mevalonate to HMG-CoA occurs through the generation of two intermediates, mevaldehyde and mevaldyl-CoA (Shown in Fig 1.1). However, several intermediary changes along the <i>Pm</i>HMGR reaction pathway remain unclear. By gathering information about the enzyme’s intermediate states via structural studies, we could identify potential allosteric sites that further the reaction mechanism. Using this knowledge, we could design enzyme inhibitors that act as novel antibacterials. The application of time-resolved crystallographic methods would provide structural information about transitory states in the PmHMGR reaction mechanism. The <i>Pm</i>HMGR crystal has been shown to be suitable for time-resolved crystallographic measurements for the reaction steps resulting in mevaldyl-CoA formation. However, our structural investigations of the mevalonate, CoA and NAD+ complex that are expected to result in the formation of mevaldehyde (Fig 1.1) do not show any changes corresponding to a turnover in the crystal environment. <br></p><p><br></p><p>To investigate the factors limiting enzymatic activity in the crystal, we investigated the effects of pH and specific ions in the crystallization environment. Kinetic studies indicated a strong <i>Pm</i>HMHGR inhibition in the crystallization buffer that is dependent on the concentration of the crystallization precipitant ammonium sulfate. These studies also indicated an increase in enzyme turnover with increasing pH. Utilizing the ionic concentration and pH-dependent properties of the enzyme in the crystallization environment, we have developed a reaction triggering approach using pH changes for <i>Pm</i>HMGR crystals.<br></p><p><br></p><p>We have demonstrated our application of this ‘pH-jump’ method by observing changes in <i>Pm</i>HMGR crystals after reaction initiation. Changes in the density of mevalonate, CoA and NAD+have indicated mevaldehyde and mevaldyl-CoA formation. Additionally, the appearance of a unique NADH absorbance peak after the pH-change has also highlighted the initiation of the <i>Pm</i>HMGR reaction and the occurrence of a hydride transfer step. Our analysis of the movements using time-resolved structures post reaction-initiation have also highlighted structural changes and inter-domain contacts in the small and flap domain that would allow cofactor exchange and product release. The pH-jump method can hence be utilized as a novel approach for triggering the <i>Pm</i>HMGR reaction in crystals and further studying transitory states along its reaction pathway.<br></p>
104

Vývoj substrátů pro kontinuální fluorescenční stanovení karboxypeptidasové aktivity s využitím rentgenostrukturní analýzy / Structure-assisted development of a continuous carboxypeptidase assay

Rakhimbekova, Anastasia January 2021 (has links)
Glutamate carboxypeptidase II (GCPII) is a zinc-dependent carboxypeptidase with high expression levels in prostate carcinoma. As the enzyme represents a validated target for cancer therapy and imaging, the development of new GCPII-specific ligands is still a focus of an active academic and industrial research. However, existing assays to screen inhibitor libraries and determine inhibitor efficacy are suboptimal at best. This thesis is aimed at the development of small internally quenched probes that could be used for continuous measurement of the GCPII enzymatic activity. These probes are derived from natural GCPII substrates and consist of a fluorophore/quencher pair connected by a GCPII-hydrolysable linker. I first characterized biophysical properties of the probes and then determined kinetic parameters of their hydrolysis by GCPII. The optimized activity assay was then used to determine inhibition constants of several GCPII-specific inhibitors. Finally, complexes between the inactive enzyme and several probes were co-crystallized and one of the complexes refined and analyzed. Our data show that the probes are involved in non-covalent interactions with the same amino acid residues of the enzyme's active site as natural substrates. The developed assay could be optimized for high-throughput...
105

Charakterizace N-demetyllinkomycin-metyltransferázy. / Characterization of N-demethyllincomycin-methyltransferase.

Poľan, Marek January 2010 (has links)
Lincomycin is a naturally occurring member of a lincosamide group of antibiotics. The cluster of lincomycin biosynthetic gene was already decribed and the function of many of genes has been clarified. This work, "Characterization of N-demethyllincomycin-methyltransferase", is focused on the study of the final step of lincomycin biosynthetic pathway - the methylation of nitrogen atom from the pyrollo ring of the propylproline unit of the N-demethyllicomycin (NDL). The aim of this work was the characterization of the protein LmbJ, catalysing this final biosynthetic step. All the experiments were provided for the enzyme LmbJ with N-terminal histidine tag, which had been prepared by the heterologous expression in E.coli cells. The pH and temperature optimum was determined as well as the Michaelis constants for both substrates of the reaction - N-demethyllincomycin and S-adenosyl methionine (SAM - a methyl group donor). With the exception of the pH optimum, all specified parameters have markedly differed from the data published for the enzyme isolated from the natural source. Based on the comparison of electron microscopy, blue native gel electrophoresis and gel filtration results, the hypothetical model of the LmbJ quarternary structure was created. Majority of methyltranserases, so far described occure in...
106

Studium mechanismu účinku metallakarboranových inhibitorů HIV proteasy / Analysis of the mechanism of action of metallacarborane inhibitors of HIV PR

Svoboda, Michal January 2011 (has links)
English Abstract Shortly after the identification of HIV as a causative agent of AIDS, an aspartic protease was identified in the viral genetic information. The very same time protease has become one of the dominant therapeutical targets in AIDS therapy. The introduction of protease inhibitors into the antiretroviral therapy has led to a significant improvement in the quality and length of life of HIV patients. However, the virus is still able to effectively prevent the impact of an inhibitor via generating inhibitor-resistant mutated protease variants. Thus, there is a constant need for novel types of inhibitors that would be capable of effectively blocking these resistant variants and simultaneously not supporting the development of novel resistant viral strains. One way to identify such inhibitors could be searching for compounds interacting with the enzyme at different sites than the active cavity, via the mechanisms of noncompetitive or uncompetitive inhibition. The group of compounds called metallacarboranes - inorganic compounds consisting of carbon, boron, hydrogen and metall ion - were shown to exhibit such an activity against HIV-1 protease. However, for further optimization of these inhibitors, detailed biophysical investigation of the enzyme-inhibitor complex is needed. This work focuses on the...
107

Expression of Recombinant Human Mast Cell Chymase With Asn-Linked Glycans in Glycoengineered Pichia Pastoris

Smith, Eliot T., Perry, Evan T., Sears, Megan B., Johnson, David A. 01 January 2014 (has links)
Recombinant human mast cell chymase (rhChymase) was expressed in secreted form as an active enzyme in the SuperMan5 strain of GlycoSwitch® Pichia pastoris, which is engineered to produce proteins with (Man) 5(GlcNAc)2 Asn-linked glycans. Cation exchange and heparin affinity chromatography yielded 5 mg of active rhChymase per liter of fermentation medium. Purified rhChymase migrated on SDS-PAGE as a single band of 30 kDa and treatment with peptide N-glycosidase F decreased this to 25 kDa, consistent with the established properties of native human chymase (hChymase). Polyclonal antibodies against hChymase detected rhChymase by Western blot. Active site titration with Eglin C, a potent chymase inhibitor, quantified the concentration of purified active enzyme. Kinetic analyses with succinyl-Ala-Ala-Pro-Phe (suc-AAPF) p-nitroanilide and thiobenzyl ester synthetic substrates showed that heparin significantly reduced KM, whereas heparin effects on kcat were minor. Pure rhChymase with Asn-linked glycans closely resembles hChymase. This bioengineering approach avoided hyperglycosylation and provides a source of active rhChymase for other studies as well as a foundation for production of recombinant enzyme with human glycosylation patterns.
108

Enzymatic and structural studies of glutathione S-transferases of white-rot fungus Ceriporiopsis subvermispora which is a selective degrader of lignin in woody biomass / 木質バイオマス中のリグニンを選択的に分解する白色腐朽菌Ceriporiopsis subvermisporaのグルタチオンS-トランスフェラーゼに関する酵素学的および構造学的研究

WAN, HASNIDAH BINTI WAN OSMAN 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第21885号 / エネ博第386号 / 新制||エネ||75(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)教授 片平 正人, 教授 森井 孝, 教授 木下 正弘 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DGAM
109

The Natural and Pharmacological Inhibition of Ribonucleotide Reductase

Misko, Tessianna, Misko 01 February 2019 (has links)
No description available.
110

Biochemical characterization of resurrected ancestral ammonia lyases

Holmberg Larsson, Albin January 2019 (has links)
This study set out to express, purify and characterize twelve ammonia lyase enzymes for potential application as a supplement to a treatment of an inborn error of metabolism disease. The DNA sequence for two wild-type ammonia lyases, three modified ammonia lyases and seven resurrected ancestral ammonia lyases had been synthesized and cloned in vectors. These were transformed into Escherichia coli, expressed, purified using immobilized metal affinity chromatography and size exclusion chromatography and characterized. Ten of the enzymes were successfully expressed and purified. All enzymes had a higher turnover number with substrate 1 than with substrate 2. The wild-types showed the highest catalytic turnover and one of them displayed substrate cooperativity. The modified enzymes were inactive. Some ancestral enzymes were active and had decreasing kcat with age. A promising ancestral enzymes was found that showed a kcat of 2,85 s-1 with substrate 1 and 1,82 s-1 with substrate 2. The ancestral enzymes had a lower Km with substrate 2 compared to substrate 1, while one of the wild-types had a higher Km with substrate 2 than with substrate 1, indicating that the substrate affinity has switched. The ancestral enzymes had increased thermostability compared to the wild-types which increased with age. Ranging from a +7C increase in melting temperature with the youngest ancestral enzyme to +10,7C with the oldest tested enzyme, comparing with one of the wild-types. The promising ancestral enzyme displayed a higher stability than the wild-types during long term incubation in 37_C and 25_C, since it did not become prone to aggregation,it did not show visible degradation on SDS-PAGE and it retained the highest activity following incubation. It was also demonstrated that neither wild-types nor the promising ancestral enzyme were stable in a simulated gut environment. The promising ancestral enzyme and one of the wild-types degraded substrate 1 and 2 in serum. Using the resurrection of ancestral sequences a promising enzyme has been produced and characterized, displaying properties that are desired in therapeutic enzymes. The enzyme did not aggregate or become prone to aggregation over time, it was thermostable, it was active in serum and had acceptable catalytic properties. For therapeutic application of the ancestral enzyme, immunogenicty should be analyzed in silico and in vitro followed by further investigation in vivo. / Målet med denna studie var att uttrycka, rena och karaktärisera tolv ammonia lyase enzymer, för potentiell användning som komplement till en behandling utav en sjukdom, som tillhör sjukdomsgruppen medfödda ämnesomsättningsrubbningar. DNA sekvensen för två vild-typammonia lyaser, tre modifierade ammonia lyaser och sju återuppväckta ammonia lyaser hade blivit syntetiserade och klonade i vektorer. E.coli celler blev transformerade med vektorerna, vilka uttryckte enzymerna, som renades med hjälp av immobilized metal affinity chromatography och gelfiltrering och karaktäriserades. Tio utav enzymerna kunde uttryckas och renas. Alla enzymer hade högre katalytisk omsättning av substrat 1 än substrat 2. Vildtyperna hade högst kcat med båda substrat och en utav dem uppvisade substratsammarbete. De modifierade enzymerna var inaktiva. Några av de återuppväckta ammonia lyaserna var aktiva och kcat minskade med ålder. Ett av de återuppväckta enzymerna var lovande och hade ett kcat värde av 2,85 s-1 med substrat 1 och 1,82 s-1 med substrat 2. De återuppväckta enzymerna hade ett lägre Km värde för substrat 2 än substrat 1, jämfört med en utav vildtyperna som hade ett högre Km värde för substrat 2 än substrat 1, vilket indikerar ett skifte i substrataffinitet. De återuppväckta enzymerna var mer termostabilia än vild-typerna och termostabiliteten ökar med ålder. Ökningen i smälttemperatur låg i spannet av +7C för de yngsta återuppväckta enzymerna till + 10,7C för det äldsta testade återuppväckta enzymet, vid jämförelse med en utav vild-typerna. Det lovande återuppväckta enzymet demonstrerade även en högre stabilitet än vild-typerna under långtidsinkubering, eftersom den inte blev benägen att aggregera, den uppvisade ingen nedbrytning på SDS-PAGE och den behöll högst aktivitet efter inkubering. Det bevisades även att varken vild-typerna eller det lovande återuppväckta enzymet var stabila i en simulerad magsäcksmiljö. Både det lovande återuppväckta enzymet och en av vild-typerna bröt ner substrat 1 och 2 i serum. Genom att återuppväcka sekvenser kunde ett lovande enzym produceras och karaktäriseras, vilket uppvisade egenskaper som är eftertraktade i terapeutiska enzymer. Enzymet aggregerade ej, det blev inte benäget att aggregera över tid, det var termostabilt, det var aktivt i serum och hade acceptabla katalytiska egenskaper. För terapeutisk applikation av det återuppväckta enzymet, borde analys av dess immunogenicitet utföras in silico och in vitro följt av vidare undersökning in vivo.

Page generated in 0.1053 seconds