Spelling suggestions: "subject:"anda proteasome"" "subject:"anda proteasomes""
151 |
Experimental and Computational Analysis of Polyglutamine-Mediated CytotoxicityTang, Matthew 05 March 2012 (has links)
Expanded polyglutamine proteins are known to be the causative agents of a number of human neurodegenerative diseases but the molecular basis of their cytoxicity is still poorly understood. Polyglutamine tracts may impede the activity of the proteasome, and evidence from single cell imaging suggests that the sequestration of polyglutamine proteins into inclusion bodies can reduce the proteasomal burden and promote cell survival, at least in the short term. The presence of misfolded protein also leads to activation of stress kinases such as p38MAPK, which can be cytotoxic. The relationships of these systems are not well understood. We have used fluorescent reporter systems imaged in living cells, and stochastic computer modeling to explore the relationships of expanded polyglutamine proteins, p38MAPK activation, generation of reactive oxygen species (ROS), proteasome inhibition, and inclusion body formation. In cells expressing a polyglutamine protein, inclusion body formation was preceded by proteasome inhibition but cytotoxicity was greatly reduced by administration of a p38MAPK inhibitor. Computer simulations suggested that without the generation of ROS, the proteasome inhibition and activation of p38MAPK would have significantly reduced toxicity. Our data suggest a vicious cycle of stress kinase activation and proteasome inhibition that is ultimately lethal to cells. There was close agreement between experimental data and the predictions of a stochastic computer model, supporting a central role for proteasome inhibition and p38MAPK activation in inclusion body formation and ROS-mediated cell death.
|
152 |
The role of ubiquitin-proteasome system at rostral ventrolateral medulla in an experimental endotoxemia model of brain stem deathWu, Hsin-yi 23 May 2012 (has links)
Brain stem cardiovascular regulatory dysfunction during brain stem death is underpinned by an upregulation of nitric oxide synthase II (NOS II) in rostral ventrolateral medulla (RVLM), the origin of a life-and-death signal detected from blood pressure of comatose patients that disappears before brain stem death ensues. At the same time, the ubiquitin-proteasome system (UPS) is involved in the synthesis and degradation of NOS II. We assessed the hypothesis that the UPS participates in brain stem cardiovascular regulation during brain stem death by engaging in both synthesis and degradation of NOS II in RVLM. In a clinically relevant experimental model of brain stem death using Sprague-Dawley rats, pretreatment by microinjection into the bilateral RVLM of proteasome inhibitors (lactacystin or proteasome inhibitor II) antagonized the hypotension and reduction in the life-and-death signal elicited by intravenous administration of Escherichia coli lipopolysaccharide (LPS). On the other hand, pretreatment with an inhibitor of ubiquitin-recycling or UCH-L1 potentiated the elicited hypotension and blunted the prevalence of the life-and-death signal. Real-time polymerase chain reaction, Western blot, electrophoresis mobility shift assay, chromatin immunoprecipitation and co-immunoprecipitation experiments further showed that the proteasome inhibitors antagonized the augmented nuclear presence of NF-£eB or binding between NF-£eB and nos II promoter and blunted the reduced cytosolic presence of phosphorylated I£eB. The already impeded NOS II protein expression by proteasome inhibitor II was further reduced after gene-knockdown of NF-£eB in RVLM. In animals pretreated with UCH-L1 inhibitor and died before significant increase in nos II mRNA occurred, NOS II protein expression in RVLM was considerably elevated. We conclude that UPS participates in the defunct and maintained brain stem cardiovascular regulation during experimental brain stem death by engaging in both synthesis and degradation of NOS II at RVLM. Our results provide information on new therapeutic initiatives against this fatal eventuality.
|
153 |
Characterizing the Molecular Switch from Proteasomes to Autophagy in Aggresome ProcessingNanduri, Priyaanka January 2015 (has links)
<p>Cells thrive on sustaining order and balance to maintain proper homeostatic functions. However, the primary machinery involved in protein quality control including chaperones, ubiquitin proteasome system, and autophagy all decline in function and expression with age. Failures in protein quality control lead to enhanced protein misfolding and aggregation. Efficient elimination of misfolded proteins by the proteasome system is critical for cellular proteostasis. However, inadequate proteasome capacity can lead to aberrant aggregation of misfolded proteins and inclusion body formation, which is a hallmark of numerous neurodegenerative diseases. Due to the post-mitotic nature of neurons, they are more susceptible to the collapse in proteostasis correlated with age. </p><p> </p><p>Here, we propose a cell based model of aggresome clearance using a reversible proteasome inhibitor, MG132, to identify the precise molecular machinery involved in proper processing of inclusions. It is known that once misfolded proteins are aggregated, the proteasome system can no longer degrade them. Furthermore, the continuous accumulation of aggregates often leads to aggresome formation, which results in amalgamated inclusion bodies that are simply too large for autophagosomes to engulf and degrade. Although, studies have shown that aggresomes can eventually be cleared by autophagy, the molecular mechanisms underlying this process remain unclear. </p><p>Our research reveals that regardless of impaired proteolysis, proteasomes can still stimulate autophagy-dependent aggresome clearance by producing unanchored lysine (K)63-linked ubiquitin chains via the deubiquitinating enzyme Poh1. Unanchored ubiquitin chains activate ubiquitin-binding histone deacetylase 6, which mediates actin-dependent disassembly of aggresomes. This crucial de-aggregation of aggresomes allows autophagosomes to efficiently engulf and eliminate the protein aggregates. Interestingly, the canonical function of Poh1 involves the cleavage of ubiquitin chains en bloc from proteasomal substrates prior to their degradation by the 20S core, which requires intact 26S proteasomes. In contrast, here we present evidence that during aggresome clearance, 20S proteasomes dissociate from protein aggregates, while Poh1 and selective subunits of 19S proteasomes are retained as an efficient K63 deubiquitinating enzyme complex. The dissociation of 20S proteasome components requires the molecular chaperone Hsp90. Hsp90 inhibition suppresses 26S proteasome remodeling, unanchored ubiquitin chain production, and aggresome clearance. Ultimately, we hope to apply these molecular markers of inclusion body processing to identify the underlying lesion in aggregate prone neurodegenerative disease.</p> / Dissertation
|
154 |
The screening for novel proteasome inhibitors as a treatment of cancer using IncuCyte FLR and fluorometric microculture cytotoxicity assay.Golovko, Olga January 2011 (has links)
The problem of finding targeted medicine is a central problem in chemotherapy. From this point of view the ubiquitin-proteasome system is a highly promising object in the pharmaceutical approach. Proteasome plays a critical role in cellular protein degradation, cell cycle and apoptosis regulation. Proteasome inhibitors are substances blocking the actions of proteasome. Cancer cells are more sensitive to inhibition of the ubiquitin-proteasome system than normal cells. Therefore proteasome inhibitors have the potential to be successfully used in the cancer treatment. The study aimed to test various substances to identify possible proteasome inhibitors with the IncuCyteTM FLR image system and fluorometric microculture cytotoxicity assay. Using the IncuCyte FLR method allows for detecting changes in the molecular processes of living cells. To make proteasome inhibition visible the model cell line MelJuSoUbG76V-YFP is used which helps to detect alterations in proteasome activity by means of the yellow fluorescent protein enrichment in cells as a response to proteasome inhibition. Fluorometric microculture cytotoxicity assay is a method for the determination of cytotoxicity in human tumor cells. The study showed that substance #25 possessed a proteasome inhibitory capacity in a dose-dependent manner as demonstrated with the IncuCyte FLR image system. According to the fluorometric microculture cytotoxicity assay, substance #1 was the most stable and toxic. Substances #2 and #185 had selective toxicity against cancer cells and lower effects against normal cells. Combining IncuCyte FLR and fluorometric microculture cytotoxicity assay allows finding substances which act as proteasome inhibitors with high toxic effect.
|
155 |
Structural bioinformatics analysis of the family of human ubiquitin-specific proteasesZhu, Xiao January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
156 |
Inhibition of the Ubiquitin Proteasome System Enhances Long-Term Depression in Rat Hippocampal SlicesLouie, LeeAnn N 01 January 2013 (has links)
The ubiquitin proteasome system (UPS) depends on three enzymes called E1, E2, and E3 to ubiquitinate proteins and several isopeptidases to de-ubiquitinate them. Ubiquitination serves as a post-translational modification that either tags proteins for degradation by the proteasome or serves to modulate their function. This dynamic system plays a role in synaptic plasticity and dysfunction of the UPS is associated a variety of neurodegenerative diseases. In this study, three inhibitors the UPS, ziram, clasto-lactacystin β-lactone (lactacystin) and G5 were employed to illuminate involvement of the UPS in long-term and short term plasticity in area CA1 of rat hippocampal slices. Ziram, lactacystin and G5 inhibits the E1 ubiquitin-activating enzyme, the proteasome and isopeptidases, respectively. It was found that UPS inhibition enhanced long-term plasticity, by specifically increasing the magnitude of long-term depression (LTD) and altered short term plasticity, measured with paired pulse facilitation (PPF), to varying degrees. These findings establish that the UPS may play a regulatory role in LTD and PPF, and the changes in PPF further indicate that the UPS may be acting presynaptically. Overall, the results suggest ubiquitination and proteasome-mediated proteolysis are important in both long-term and short-term plasticity.
|
157 |
In vitro and in vivo characterization of the E3 ubiquitin ligase RNF157 in the brainLee, Shih-Ju 01 December 2014 (has links)
No description available.
|
158 |
Analysis of heat shock protein 30 gene expression and function in Xenopus laevis A6 kidney epithelial cellsKhan, Saad 28 August 2014 (has links)
Heat shock proteins (HSPs) are molecular chaperones that assist in protein synthesis, folding and degradation and prevent stress-induced protein aggregation. The present study examined the pattern of accumulation of HSP30 and HSP70 in cells recovering from heat shock as well as the effect of proteasome inhibition on cytoplasmic/nuclear and endoplasmic reticulum (ER) molecular chaperone accumulation, large multimeric HSP30 complexes, stress granule and aggresome formation in Xenopus laevis A6 kidney epithelial cells. Initial immunoblot analysis revealed the presence of elevated levels of HSP30 after 72 h of recovery. However, the relative levels of HSP70 declined to near control levels after 24 h. The relative levels of both hsp30 and hsp70 mRNA were reduced to low levels after 24 h of recovery from heat shock. Pretreatment of cells with cycloheximide, a translational inhibitor, produced a rapid decline in HSP70 but not HSP30. The cycloheximide-associated decline of HSP70 was blocked by the proteasomal inhibitor, MG132, but had little effect on the relative level of HSP30. Also, treatment of cells with the phosphorylation inhibitor, SB203580, in addition to cycloheximide treatment enhanced the stability of HSP30 compared to cycloheximide alone. Immunocytochemical studies detected the presence of HSP30 accumulation in a granular pattern in the cytoplasm of recovering cells and its association with aggresome-like structures, which was enhanced in the presence of SB203580. To verify if proteasome inhibition in A6 cells induced the formation of similar HSP30 granules, immunoblot and immunocytochemical analyses were performed. MG132, celastrol and withaferin A enhanced ubiquitinated proteins, inhibited chymotrypsin-like activity of the proteasome and induced the accumulation of cytoplasmic/nuclear HSPs, HSP30 and HSP70 as well as ER chaperones, BiP and GRP94 and heme oxygenase-1. Northern blot experiments determined that proteasome inhibitors induced an accumulation in hsp30, hsp70 and bip mRNA but not eIF1α. The final part of this study demonstrated that treatment of A6 cells with proteasome inhibitors or sodium arsenite or cadmium chloride induced HSP30 multimeric complex formation primarily in the cytoplasm. Moreover, these stressors also induced the formation of RNA stress granules, pre-stalled translational complexes, which were detected via TIA1 and polyA binding protein (PABP), which are known stress granule markers. These stress granules, however, did not co-localize with large HSP30 multimeric complexes. In comparison, proteasome inhibition or treatment with sodium arsenite or cadmium chloride also induced the formation of aggresome-like structures, which are proteinaceous inclusion bodies formed as a result of an abundance of aggregated protein. Aggresome formation was identified by monitoring the presence of vimentin and γ-tubulin, both of which are cytoskeletal proteins and serve as markers of aggresome detection. Aggresome formation, which was also verified using the ProteoStat assay, co-localized with large HSP30 multimeric complexes. Co-immunoprecipitation experiments revealed that HSP30 associated with γ-tubulin and β-actin in cells treated with proteasome inhibitors or sodium arsenite or cadmium chloride suggesting a possible role in aggresome formation. In conclusion, this study has shown that the relative levels of heat shock-induced HSP30 persist during recovery in contrast to HSP70. While HSP70 is degraded by the ubiquitin-proteasome system, it is likely that the presence of HSP30 multimeric complexes that are known to associate with unfolded protein as well as its association with aggresome-like structures may delay its degradation. Finally, proteasome inhibition, sodium arsenite and cadmium chloride treatment of A6 cells induced cytoplasmic/nuclear and ER chaperones as well as resulting in the formation stress granules and aggresome-like structures which associated with large HSP30 multimeric complexes.
|
159 |
Tumour Survival Signals and Epigenetic Gene Silencing in Multiple Myeloma : Implications for Biology and TherapyFristedt Duvefelt, Charlotte January 2015 (has links)
This thesis is focused on multiple myeloma (MM), a haematological malignancy that still remains incurable. The pathogenesis of MM is not fully understood and there is a large intra-tumour and interclonal genetic variation in MM patients. One of the most challenging areas in MM research is to find mechanisms for initiation and progression of MM, but also to overcome the arising resistance to therapy. In paper I, a signature of under-expressed genes in MM was found to significantly correlate with already defined Polycomb target genes. In selected genes from the profile we found an enrichment of H3K27me3, a repressive mark catalysed by Polycomb repressive complex 2 (PRC2), in MM patients and MM cell lines. Treatment with LBH589 (HDAC inhibitor) and DZNep (methyltransferase inhibitor) reactivated the H3K27me3 target genes and induced apoptosis in MM cell lines. LBH589 reduced tumour load and increased overall survival in the 5T33MM mice. These results suggest an important role for Polycomb complex in MM development and highlight PRC2 as a drug target in MM. In paper II, the insulin-like growth factor type 1 receptor tyrosine kinase (IGF-1RTK) inhibitor picropodophyllin (PPP) in combination with LBH589 synergistically inhibited cell proliferation and enhanced the apoptotic effect in MM. Since the bone marrow microenvironment has an important role in MM disease and also contributes to drug-resistance, we therefore evaluated the drug combination in the immunocompetent 5T33MM murine model. The drug combination significantly prolonged the survival of the 5T33MM mice compared to single drug treatment. We conclude that the combination of PPP and LBH589 has a therapeutic potential in MM. In paper III, the role of the cellular inhibitor of apoptosis protein 2 (cIAP2) was evaluated in MM cells harbouring TRAF3 deletion/mutation. By overexpressing cIAP2 in these cells we found an increased resistance to proteasome inhibitors. cIAP2 over-expression by lentiviral constructs led to decreased caspase activation, activation of the canonical NF-κB pathway, and down-regulation of tumour suppressor genes and genes that contribute to apoptosis. Supporting the role of cIAP2 mediated drug-resistance, we here demonstrate that inhibiting cIAP2 using an IAP antagonist, increased the sensitivity to the proteasome inhibitor, bortezomib.
|
160 |
Experimental and Computational Analysis of Polyglutamine-Mediated CytotoxicityTang, Matthew 05 March 2012 (has links)
Expanded polyglutamine proteins are known to be the causative agents of a number of human neurodegenerative diseases but the molecular basis of their cytoxicity is still poorly understood. Polyglutamine tracts may impede the activity of the proteasome, and evidence from single cell imaging suggests that the sequestration of polyglutamine proteins into inclusion bodies can reduce the proteasomal burden and promote cell survival, at least in the short term. The presence of misfolded protein also leads to activation of stress kinases such as p38MAPK, which can be cytotoxic. The relationships of these systems are not well understood. We have used fluorescent reporter systems imaged in living cells, and stochastic computer modeling to explore the relationships of expanded polyglutamine proteins, p38MAPK activation, generation of reactive oxygen species (ROS), proteasome inhibition, and inclusion body formation. In cells expressing a polyglutamine protein, inclusion body formation was preceded by proteasome inhibition but cytotoxicity was greatly reduced by administration of a p38MAPK inhibitor. Computer simulations suggested that without the generation of ROS, the proteasome inhibition and activation of p38MAPK would have significantly reduced toxicity. Our data suggest a vicious cycle of stress kinase activation and proteasome inhibition that is ultimately lethal to cells. There was close agreement between experimental data and the predictions of a stochastic computer model, supporting a central role for proteasome inhibition and p38MAPK activation in inclusion body formation and ROS-mediated cell death.
|
Page generated in 0.0409 seconds