• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 14
  • 13
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 208
  • 208
  • 35
  • 31
  • 28
  • 22
  • 21
  • 19
  • 19
  • 19
  • 18
  • 17
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

藥物創新的區域分佈: 基於1996-2010年美國上市新藥的實證研究

文詩雅 January 2014 (has links)
University of Macau / Institute of Chinese Medical Sciences
92

A new Canadian intellectual property right : the protection of data submitted for marketing approval of pharmaceutical drugs

Stoddard, Damon. January 2006 (has links)
In order to market and sell a new pharmaceutical drug in Canada, the Minister of Health requires the initial applicant to submit clinical test results demonstrating that the drug is safe and effective for human use. Subsequent applicants, who typically lack the resources to conduct expensive clinical trials, must refer to and rely upon the initial applicant's data in their applications to market a generic version of the drug. / On June 17, 2006, the federal government of Canada published a proposed data protection regulation, which would provide an initial applicant with eight years of protection for clinical test results submitted in a new drug submission. This protection would lead to an eight year period of market exclusivity for the drug associated with the clinical test data, regardless of whether that drug was protected by a Canadian patent. / In this thesis, the author first describes what data protection is on a practical level, and distinguishes data protection from other forms of intellectual property rights. Next, the author discusses how various jurisdictions choose to protect clinical test data submitted to their health authorities. Canada's international obligations pursuant to the NAFTA and the TRIPS Agreement are also examined. In this regard, the author argues that Canada is under no obligation to provide initial applicants with eight years of data protection. Furthermore, the author argues that exclusive time-limited property rights in clinical test data are difficult to justify from a theoretical perspective. Finally, the author prescribes certain legislative changes to Canada's proposed data protection regulation.
93

Recombinant expression and initial characterisation of two Plasmodium copper binding proteins.

Choveaux, David L. 09 December 2013 (has links)
Plasmodium falciparum is a protozoan parasite responsible for the most severe form of human malaria, with infection often resulting in death. Efforts to control malaria have been hindered by an increased spread of parasite resistance to previously effective antimalarial drugs, leading to an intensified search for novel antimalarial drug targets. A group of proteins suggested as potentially effective targets are the integral membrane transport proteins, since they play key roles in Plasmodium parasite growth and replication. One such membrane protein recently characterised was the P. falciparum copper efflux transporter. Treatment of cultured P. falciparum parasites with the intracellular copper chelator neocuproine inhibited parasite growth, suggesting that additional mechanisms for malaria parasite copper homoeostasis are likely to be present. Copper is an essential trace element involved in enzymatic processes requiring redox-chemistry. In higher eukaryotes copper is transported across the plasma membrane via the copper transport protein, Ctr1, and distributed intracellularly by copper metallochaperones. The mechanisms for copper acquisition and distribution in the Plasmodium parasite are, however, yet to be characterised. An in silico Basic Local Alignment Search Tool for protein (BLASTp) screen of the Plasmodium database (www.plasmodb.org) identified sequences corresponding to a putative copper transporter, and associated copper metallochaperones, in eight species of the Plasmodium parasite. Each of the Plasmodium copper transport protein sequences was found to contain features common to the well characterised copper transporters. These features included predicted copper-binding motifs in the protein's amino terminus, three membrane spanning domains and the characteristic MxxxM and GxxxG motifs located in the second and third transmembrane domains, respectively. Affinity purified anti-peptide antibodies, generated against an immunogenic peptide (CSDKQSGDDECKPILD) in the amino terminus of a putative malaria parasite copper transporter (PY00413), detected the target protein in murine malaria parasites in association with a parasite membrane. The open reading frames corresponding to the amino terminal domains of one P. berghei [PBANKA_130290 (447 bp)] and two P. falciparum [PF14_0211 (132 bp) and PF14_0369 (282 bp)] putative copper transport proteins were PCR amplified, ligated into pGEM®-T and then expressed as recombinant fusion proteins with maltose binding protein (MBP). The resulting sizes for the recombinant proteins were 61kDa for MBP-PbCtrNt, 48kDa for MBP-PfCtr211Ntᵀᴰ and 55kDa for MBP-PfCtr369Ntᵀᴰ, with each protein being recognised by a corresponding anti-peptide antibody. All three recombinant proteins bound copper in vitro and in vivo, with each having a binding preference for the reduced cuprous ion. This preference has been similarly established for the characterised copper transporters. Although the results supported the expression and copper binding ability of a Plasmodium parasite copper transport protein, the directional transport of copper, by this protein, requires experimental confirmation as does its specific location. The identification of a P. falciparum copper transporter, and other copper dependent proteins, implies a parasite metabolic requirement for copper. Mammalian and yeast cells require a Cox17 metallochaperone for copper delivery to cytochrome-c oxidase. Identification of P. falciparum orthologs for Cox17 (PF10_0252) and a number of cytochrome-c oxidase subunits (PF13_0327; PF14_0288; mal_mito_1; mal_mito_2; PFI1365w; PFI1375w), suggests the existence of similar parasite mechanisms for copper delivery. Analysis of the Plasmodium Cox17-like sequences identified essential amino acids conserved in the well characterised yeast and mammalian Cox17. This included the identification of six cysteine residues essential for Cox17 function. A homology model of P. falciparum Cox17, with human Cox17 as the template [PDB ID: 2RN9 (apoCox17); 2RN8 (Cu⁺-Cox17)], suggested that Plasmodium Cox17 orthologs would adopt a similar structural conformation. The open reading frames for full-length P. yoelii [PY03823 (192 bp)] and P. falciparum [PF10_0252 (195 bp)] Cox17 were PCR amplified, ligated into pGEM®-T and then expressed as recombinant fusion proteins with either a His₆-tag or glutathione S-transferase (GST)-tag, respectively. The resulting sizes for the recombinant proteins were 11.6kDa for His₆-PyCox17 and 33.5kDa for GST-PfCox17, with each protein being recognised by a corresponding anti-peptide antibody. Both recombinant Cox17 proteins bound the cuprous ion in vitro and in vivo, similar to mammalian and yeast Cox17. This supported the likely existence of a mitochondrial copper metallochaperone pathway within the malaria parasite; however, this requires further experimental confirmation. Identification of a parasite copper transport protein, and associated metallochaperones, could provide novel targets for drug-based inhibition of parasite growth. Alternatively, the copper transporter may provide a novel mechanism for drug delivery into the Plasmodium parasite. The potential of these malaria parasite proteins being effective drug targets does, however, remain to be confirmed. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2011.
94

Vivapain : a cysteine peptidase from Trypanosoma vivax.

Vather, Perina. January 2010 (has links)
African animal trypanosomosis is a devastating disease affecting livestock mainly found in sub-Saharan Africa. This disease is known as nagana and is transmitted by the trypanosome parasite from the tsetse fly vector to a mammalian host. There are three African trypanosomes namely Trypanosoma vivax, T. congolense and T. brucei brucei that are the causative agents responsible for this disease in African cattle. This disease is serious since it not only affects livestock but also has a negative impact on the sub-Saharan African economy. There is, therefore, a great demand for better control methods of the disease and suitable diagnostic methods. Current control measures such as the use of trypanocidal drugs, tsetse fly eradication methods and trypanotolerant cattle have become inadequate. The defence mechanism of the trypanosome to continuously change its surface coat by a process of antigenic variation has made it impossible to produce a suitable vaccine. Therefore, chemotherapy is still one of the key approaches for control of this wasting disease. The long existence of the current trypanocidal drugs has allowed the development of drug resistance. The development of new chemotherapeutic drugs is focused on targeting the pathogenic factors such as parasite cysteine peptidases that contribute to the disease. Vivapain is the main cysteine peptidase of T. vivax and shares high sequence identity with congopain, the main cysteine peptidase of T. congolense, which was previously shown to be a pathogenic factor contributing to trypanosomosis. Vivapain, thus, has potential as a target for chemotherapeutic drug design. Hence, the first part of this study involved the recombinant expression and enzymatic characterisation of vivapain for future production of new synthetic inhibitors for the use in new trypanocidal drugs. The catalytic domain of vivapain (Vp) was recombinantly expressed in the Pichia pastoris yeast expression system and enzymatically characterised. The main finding from this study was that Vp was only able to hydrolyse a substrate if the P2 position was occupied by either a hydrophobic Phe or Leu residue. Vp was also found to be active close to physiological pH and was inhibited by the reversible cysteine peptidases, leupeptin, antipain and chymostatin and the irreversible cysteine peptidases L-trans-epoxysuccinyl-leucylamido (4-guanidino) butane (E-64), iodoacetic acid (IAA) and iodoacetamide (IAN). A further important aspect of controlling trypanosomosis is the diagnosis of the disease. Clinical, parasitological, molecular and serological techniques have been applied and used to diagnose trypanosomosis. One of the most promising serological techniques has proven to be the enzyme-linked immunosorbent assay (ELISA), more specifically the antibody and antigen detection ELISAs. The main requirement for this technique is a readily available and reproducible antigen such as that produced by recombinant expression. While there are recombinant antigens that are available to be used to detect T. congolense, T. brucei brucei and even T. evansi infections, there are none available to detect T. vivax infections. In the second part of this study, a mutant inactive full length form of vivapain (FLVp) was expressed in a bacterial expression system for the detection of T. vivax infections. Antibodies against this antigen were produced in both chickens and mice. Both the chicken IgY and mice sera were able to detect the recombinant FLVp in western blots. The mice sera were also able to detect native vivapain in a T. vivax lysate, which is very promising for future use of the FLVp antigen and the corresponding antibodies in diagnosis of T. vivax infections in sera of infected animals. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.
95

Development of a high throughput small molecule screen using Staphylococcus aureus invasion of cells

Kenney, Shelby R. January 2009 (has links)
Staphylococcus aureus is a common and versatile opportunistic pathogen in humans. Increases in the incidence of community acquired and nosocomial infections, coupled with the emergence of antibiotic resistant strains, are causing new treatment challenges for health care professionals. S. aureus readily binds to the endothelial cell surface and utilizes host cell endocytosis to evade host cell immune responses. Inhibition of endocytosis may cause S. aureus to remain unprotected at the host cell surface, allowing host immune systems and other therapeutics more time to clear an infection. Simvastatin inhibits host cell endocytosis. We hypothesize that using simvastatin to inhibit S. aureus invasion of host cells, a high throughput, small molecule screen can be developed. The high throughput screen will evaluate the National Institutes of Health small molecule library for compounds that better inhibit endocytosis. Additionally, 2-dimensional gel electrophoresis will be performed to elucidate the pathway simvastatin alters to inhibit endocytosis. / Department of Biology
96

Prehydrated Electron and Its Role in Ionizing Radiation Induced DNA Damage and Molecular Mechanisms of Action of Halogenated Sensitizers for Radiotherapy of Cancer

Wang, Chunrong 06 November 2014 (has links)
Despite advances in technology and understanding of biological systems in the past two decades, modern drug discovery is still a lengthy, expensive, difficult and inefficient process with low rate of new therapeutic discovery. The search for new effective drugs remains a somewhat empirical process. There is compelling need for a more fundamental, mechanistic understanding of human cancers and anticancer drugs to design more appropriate drugs. Radiotherapy is still the major therapy of cancer. It uses high-energy ionizing radiation such as x-rays and charged particle beams to destroy cancer cells. DNA is well known to be the principal biological target of radiotherapy, but the molecular mechanism of ionizing radiation induced DNA damage was elusive. The conventional thought of the ???OH radical as the major origin for ionizing radiation induced DNA damage is questionable. Although various strategies and types of compounds have been designed and developed as potential radiosensitizers to enhance the radiosensitizing efficiency of radiotherapy, none of them have been approved for clinical use. The general outcomes of clinical trials have been disappointing. This thesis presents an innovative molecular-mechanism-based drug discovery project to develop novel drugs for effective radiotherapy of cancer through the emerging femtomedicine approach. Its ultimate goal is to develop more effective radiosensitizers, based on our unique molecular understandings of ionizing radiation induced DNA damage and halopyrimidines as a family of potential radiosensitizers. Direct, real-time observation of molecular reactions is of significant importance in diverse fields from chemistry and biology, environmental sciences to medicine. Femtosecond time-resolved laser spectroscopy (fs-TRLS) is a very powerful, direct technique for real-time observation of molecular reactions. Its key strength lies in short duration laser flashes of a time scale at which reactions actually happen - femtoseconds (fs) (1fs = 10???15 second). Since the late 1980s, its application to study chemical and biological systems led to the births of new subfields of science, called femtochemistry and femtobiology. Recently, femtomedicine has been proposed as a new transdisciplinary frontier to integrate ultrafast laser techniques with biomedical methods for advances in fundamental understandings and treatments of major human diseases. This the remarkable opportunity afforded through real-time observation of biochemical reactions at the molecular level. Femtomedicine holds the promise of advances in the radiotherapy of cancer. Several important findings were made in this thesis. First, our results of careful and high-quality fs-TRLS measurements have resolved the long existing controversies about the physical nature and lifetimes of a novel ultrashort-lived electron species (epre???) generated in radiolysis of water. These results have not only resolved the large discrepancies existing in the literature but provided new insights into electron hydration dynamics in bulk water. Such information is important for quantitative understanding and modeling of the role of non-equilibrium epre??? in electron-driven reactions in diverse environmental and biological systems, from radiation chemistry and radiation biology to atmospheric ozone depletion. Second, our fs-TRLS results have unraveled how epre??? plays a crucial role in ionizing radiation induced DNA damage. We found that among DNA bases, only T and especially G are vulnerable to a dissociative electron transfer (DET) reaction with epre??? leading to bond breaks, while the electron can be stably trapped at C and especially A to form stable anions. The results not only challenge the conventional notion that damage to the genome by ionizing radiation is mainly induced by the oxidizing ???OH radical, but provide a deeper fundamental understanding of the molecular mechanism of the DNA damage caused by a reductive agent (epre???). Our findings have led to a new molecular mechanism of reductive DNA damage. Third, halopyrimidines, especially BrdU and IdU, have passed Phase I to II clinical trials as potential hypoxic radiosensitizers, but the outcome of Phase III clinical trials was disappointing. Our results of fs-TRLS studies have provided a new molecular mechanism of action of halopyrimidines (XdUs, X=F, Cl, Br and I) in liquid water under ionizing radiation. We found that it is the ultrashort-lived epre???, rather than the long-lived ehyd???, that is responsible for DET reactions of XdUs. This reaction leads to the formation of the reactive dU??? radical, which then causes DNA strand breaks and cancer cell death. Our results have challenged a long accepted mechanism that long-lived ehyd??? would be responsible for the radical formation from halogenated molecules. Furthermore, we found that the DET reaction efficacy leading to the formation of the reactive dU??? radical is in the order of FdU << CldU < BrdU < IdU. Thus, only BrdU and IdU could be explored as potential radiosensitizers, in agreement with the results of bioactivity tests and clinical trials. Fourth, our fs-TRLS studies have provided a molecular mechanism for the DNA sequence selectivity of BrdU and IdU in radiosensitization. We found the DET reactions of BrdU/ IdU with dAMP*??? and dGMP*??? formed by attachment of epre??? generated by radiolysis of water in aqueous BrdU-dAMP/dGMP and IdU-dAMP/dGMP complexes under ionizing radiation. This new mechanistic insight into the interaction of BrdU and IdU with DNA provides clues to improve the halogen familty as potential radiosensitizers and to develop more effective radiosensitizers for clinical applications. Fifth, based on our molecular mechanistic understandings of DNA damage induced by ionizing radiation and halopyrimidines as potential radiosensitizers, we develop more effective new radisensitizing drug candidates through the femtomedicine approach. We have performed a fs-TRLS study of the DET reaction of a candidate compound (RS-1) with epre???, and found that the DET reaction of epre??? with RS-1 is much stronger than that of IdU (and certainly BrdU and CldU). Moreover, we have tested the radiosensitizing effect of RS-1 against human cervical cancer (HeLa) cells exposed to various doses of x-ray irradiation through DNA damage measurements by gel electrophoresis and cell viability/death assays by MTT. Our results have confirmed that RS-1 can largely enhance the radiosensitivity of treated human cervical cancer (HeLa) cells to x-ray (ionizing) radiation. It is clearly demonstrated that RS-1 has a much better radiosensitizing effect than IdU. Although these are just preliminary results, our results have shown promise of developing more effective radiosensitizers. In summary, our studies have demonstrated the potential of femtomedicine as an exciting new frontier to bring breakthroughs in understanding fundamental biological processes and to provide an efficient and economical strategy for development of new anticancer drugs.
97

Killing of mycobacteria by macrophage cathepsin D.

Jugmohan, Mayuri. January 2011 (has links)
Tuberculosis (TB) is the fifth largest cause of death in South Africa, with one in ten cases being resistant to treatment due to the development of multidrug-resistance and extensively drug-resistance in the agent responsible for this disease, Mycobacterium tuberculosis. This pathogen has developed mechanisms to evade killing by immune cells such as macrophages. Mycobacterium smegmatis, a non-pathogen, that does not evade killing by the macrophage, is often used to gain a better insight into the bacteriocidal pathways used to kill mycobacteria, and those potentially blocked by M.tuberculosis. In such studies nitric oxide and “lysosomal” proteases have emerged as major bacteriocidal pathways. Studies on the role of aspartic protease, cathepsin D, in killing green fluorescent protein- (GFP-) tagged-M.smegmatis in J774 macrophages required antibodies that would not cross-react with mycobacterial antigens. These were raised in chickens, using alum and saponin as adjuvants, and porcine and human cathepsin D. Using such antibodies, quantitative colocalization analysis using ImageJ and the JACoP colocalization plugins showed a greater degree of colocalization between cathepsin D and LysoTracker Red DND-99 in M.smegmatis-infected J774 macrophages than in uninfected cells. This indicates the possible presence of active, bacteriocidal cathepsin D in acidic, and hence matured phagosomes. A higher colocalization between cathepsin D and LAMP-1 and cathepsin D and LAMP-2 in uninfected cells possibly indicates the recycling of these two markers from vesicles not containing killed bacteria. Propidium iodide (PI) labelling and loss of GFP fluorescence appeared reliable indicators of M.smegmatis death or viability, respectively, as myobacteria that took up PI also lost green fluorescence, while M.smegmatis that exhibited green fluorescence (viable) were not observed to take up propidium iodide (dead). Faint colocalization between cathepsin D, LAMP-1 and -2 with dead, and to a lesser extent with live M.smegmatis occurred. Besides intensity correlation values other colocalization programs indicate the absence of colocalization between these markers and dead M.smegmatis, but, together with in vitro killing experiments (cathepsin D, 0.0098 units/ml resulting in 59% killing in 4 h) these appear to indicate a possible role of cathepsin D in killing of M.smegmatis. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2011.
98

The design, preparation and evaluation of Artemisia Afra and placebos in tea bag dosage form suitable for use in clinical trials.

Dube, Admire January 2006 (has links)
<p>Artemisia Afra, a popular South African traditional herbal medicine is commonly administered as a tea infusion of the leaves. However, clinical trials proving it safety and efficacy are lacking mainly due to the absence of good quality dosage forms and credible placebos for the plant. The objectives of this study were to prepare a standardized preparation of the plant leaves and freeze-dried aqueous extract powder of the leaves, in a tea bag dosage form and to design and prepare credible placebos for these plant materials.</p>
99

Exploring Cancer Drugs In Vitro and In Vivo : With Special Reference to Chemosensitivity Testing and Early Clinical Development

von Heideman, Anne January 2011 (has links)
The aims of this thesis were to investigate the utility of in vitro drug sensitivity testing to optimize the use of cancer chemotherapy and to assess the properties of a new cancer drug in a phase I clinical trial. Tumour cells from patients were analysed with the short-term Fluorometric Microculture Cytotoxicity Assay (FMCA). In samples from a wide spectrum of tumour types, the effect of the drug combination FEC (5Fu-epirubicin-cyclophosphamide) was generally appropriately predicted from the effect of the best component drug. However, of samples intermediately sensitive to the best single drug, 45% converted to sensitive when testing the combination. Thus, combination testing may identify advantageous interactions and improve in vitro test performance. In tumour samples from peritoneal carcinomatosis, significant differences in drug sensitivity between diagnoses were observed, cross-resistance between most drugs was modest or absent, and the concentration-effect relationships for two drugs in individual samples varied considerably. Thus, for optimal selection of drugs for intraperitoneal chemotherapy, differences in drug sensitivity at the diagnosis and individual patient level should be considered. In samples from patients with ovarian carcinoma, drug sensitivity was related to tumour grade, histologic subtype and patient treatment status. In a homogeneous subset of patients, the FMCA predicted individual patient tumour response with high sensitivity and specificity. Thus, if carefully interpreted in the context of important clinical variables, in vitro testing could be of value for individualizing chemotherapy in ovarian cancer. Employing a once weekly dosing schedule in a phase I trial, the mechanistically new and preclinically promising NAD depleting drug CHS 828 produced dose limiting thrombocytopenia and gastrointestinal toxicity without clear evidence of anti-tumour efficacy. It is concluded that in vitro drug sensitivity testing could be a way to optimize the use of chemotherapy and that successful development of new cancer drugs needs improved strategies.
100

Practical Optimal Experimental Design in Drug Development and Drug Treatment using Nonlinear Mixed Effects Models

Nyberg, Joakim January 2011 (has links)
The cost of releasing a new drug on the market has increased rapidly in the last decade. The reasons for this increase vary with the drug, but the need to make correct decisions earlier in the drug development process and to maximize the information gained throughout the process is evident. Optimal experimental design (OD) describes the procedure of maximizing relevant information in drug development and drug treatment processes. While various optimization criteria can be considered in OD, the most common is to optimize the unknown model parameters for an upcoming study. To date, OD has mainly been used to optimize the independent variables, e.g. sample times, but it can be used for any design variable in a study. This thesis addresses the OD of multiple continuous or discrete design variables for nonlinear mixed effects models. The methodology for optimizing and the optimization of different types of models with either continuous or discrete data are presented and the benefits of OD for such models are shown. A software tool for optimizing these models in parallel is developed and three OD examples are demonstrated: 1) optimization of an intravenous glucose tolerance test resulting in a reduction in the number of samples by a third, 2) optimization of drug compound screening experiments resulting in the estimation of nonlinear kinetics and 3) an individual dose-finding study for the treatment of children with ciclosporin before kidney transplantation resulting in a reduction in the number of blood samples to ~27% of the original number and an 83% reduction in the study duration. This thesis uses examples and methodology to show that studies in drug development and drug treatment can be optimized using nonlinear mixed effects OD. This provides a tool than can lower the cost and increase the overall efficiency of drug development and drug treatment.

Page generated in 0.128 seconds