• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 14
  • 13
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 208
  • 208
  • 35
  • 31
  • 28
  • 22
  • 21
  • 19
  • 19
  • 19
  • 18
  • 17
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

The design, preparation and evaluation of Artemisia Afra and placebos in tea bag dosage form suitable for use in clinical trials

Dube, Admire January 2006 (has links)
Magister Pharmaceuticae - MPharm / Artemisia Afra, a popular South African traditional herbal medicine is commonly administered as a tea infusion of the leaves. However, clinical trials proving it safety and efficacy are lacking mainly due to the absence of good quality dosage forms and credible placebos for the plant. The objectives of this study were to prepare a standardized preparation of the plant leaves and freeze-dried aqueous extract powder of the leaves, in a tea bag dosage form and to design and prepare credible placebos for these plant materials. / South Africa
122

Catequina e epicatequina minimizam a toxicidade induzida pela amiodarona em fibroblasto de pulmão humano (MRC-5)

Santos, Luciana Fernandes Silva 20 November 2015 (has links)
A amiodarona é um dos fármacos mais usados para o tratamento de arritmias cardíacas, tanto ventriculares como supraventriculares. Apesar de sua eficácia, o uso da amiodarona está associado a vários efeitos adversos, incluindo a toxicidade pulmonar. O mecanismo pelo qual a amiodarona causa lesão nas células pulmonares humanas não é inteiramente conhecido, mas estudos em cultura de células hepáticas humanas e pulmonares de ratos têm sugerido que a disfunção mitocondrial e o estresse oxidativo têm um papel importante na citotoxicidade da amiodarona. Os compostos fenólicos, incluindo catequina e epicatequina são amplamente distribuídos na natureza e conhecidos por sua capacidade de reduzir o estresse oxidativo. Além disso, alguns compostos fenólicos são capazes de modular a atividade mitocondrial. Em vista disso, o objetivo deste trabalho foi avaliar a capacidade dos compostos fenólicos catequina e epicatequina em a disfunção mitocondrial e os danos oxidativos causados pela amiodarona em células de fibroblasto de pulmão humano (MRC-5). Para atingir os objetivos as células MRC-5 foram tratadas com diferentes concentrações de catequina e epicatequina e após foram expostas a amiodarona 100 μM. A disfunção mitocondrial foi determinada através da atividade do complexo I da cadeia de transporte de elétrons e a biossíntese de ATP usando kits específicos. A viabilidade celular foi avaliada através do ensaio de 3-[4,5- dimetiltiazol 2-il]-2,5 difenil brometo de tetrazolina. A atividade das enzimas superóxido dismutase e catalase foram determinadas espectrofotometricamente. Os danos oxidativos a lipídeos e proteínas foram verificados através dos ensaios de substâncias reativas ao acido tiobarbitúrico e a proteínas carboniladas, respectivamente, e os níveis de óxido nítrico foram avaliados usando o método de Griess. Os resultados mostraram que a amiodarona inibiu a atividade do complexo I da cadeia de transporte de elétrons em 53% e a biossíntese de ATP em 9,5% e tanto a catequina como a epicatequina foram capazes de evitar estes efeitos em todas as concentrações (5, 10, 20 μM) testadas. Verificou-se que a amiodarona reduziu a atividade das enzimas superóxido dismutase e catalase (indicando produção de superóxido e peróxido de hidrogênio) e aumentou os danos oxidativos a lipídeos e proteínas. Os compostos fenólicos catequina e epicatequina foram capazes de minimizar as alterações no metabolismo redox induzidos pela amiodarona e aumentar a viabilidade nas células MRC-5. Catequina e epicatequina reduziram a depleção de óxido nítrico causada pela amiodarona. Este trabalho mostrou, pela primeira vez, que o mecanismo de toxicidade da amiodarona em células MRC-5 está associado à disfunção mitocondrial, principal causa de geração de dano oxidativo celular e que estes efeitos tóxicos são em parte reduzidos pela catequina e epicatequina. Embora outros estudos sejam necessários, estes dados abrem novas perspectivas para estudos visando o desenvolvimento de medicamentos que minimizem os efeitos tóxicos da amiodarona. / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES. / Amiodarone is among the most widely used drugs for the treatment of ventricular and supraventricular cardiac arrhythmias. However, the use of amiodarone is associated with several side effects including pulmonary toxicity. The mechanism of amiodarone toxicity is not well known, but studies in human liver cells and rats lung cells have been suggested that mitochondrial dysfunction and oxidative stress play important role in the amiodarone cytotoxicity. Phenolic compounds, including catechin and epicatechin are widespread in nature and known for their ability to reduce oxidative stress. In addition, some phenolic compounds are able to modulate mitochondrial activity. Therefore, the objective of this study was to evaluate the ability of phenolic compounds catechin and epicatechin to minimize the mitochondrial dysfunction and oxidative damage induced by amiodarone in human lung fibroblast cells (MRC-5). To achieve the objectives, MRC-5 cells were treated with different concentrations of catechin and epicatechin and then amiodarone 100 μM. Mitochondrial dysfunction was determined by the activity of complex I of the electron transport chain and ATP biosynthesis using specific kits. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The activity of the enzymes superoxide dismutase and catalase were determined spectrophotometrically. The oxidative damage to lipids and proteins have been verified through the test substances reactive to the thiobarbituric acid and carbonyl protein, respectively, and nitric oxide levels were evaluated using the Griess method. The results showed that amiodarone inhibit 53% of the activity of complex I of the electron transport chain and 9.5% of ATP biosynthesis and both catechin and epicatechin were able to avoid these effects in all concentrations (5 10, 20 mM) tested. It was found that amiodarone reduced the superoxide dismutase and catalase activities (indicating the production of radicals superoxide and hydrogen peroxide) and increased oxidative damage to lipids and proteins. Phenolic compounds catechin and epicatechin were able to minimize alterations in the redox metabolism and increase in viability of MRC-5 cells. Furthermore, catechin and epicatechin reduced nitric oxide depletion caused by amiodarone. This study showed, for the first time, that toxicity of amiodarone in human lung cultured cells is associated, at least, in part, with mitochondrial dysfunction which was avoided by catechin and epicatechin. Although further studies are needed, these data open new perspectives for studies aiming the development of drugs that minimize the toxic effects of amiodarone.
123

Problematika hodnocení a snížení dopadů tzv. černých labutí při uvádění nových léčiv na trh / Assessing and Reducing the Impact of so called Black Swans in Launching New Medicines

Ženatá, Lucie January 2017 (has links)
The diploma thesis is focused on the analysis and evaluation of risks in the introducing of new drug in the case of unexpected mass infections from the point of view of black swans. This thesis acquaints itself with the current state of the problematics, explains the terminology and meaning of black swans and gives examples of biological black swans. On the basis of the analysis and the available informations is proposed a risk assessment approach together with proposals how to reduce or eliminate possible risks.
124

Analysis of new drugs whose clinical development and regulatory approval were hampered during their introduction in Japan / 日本における新医薬品の開発及び承認審査段階におけるハードルの検討

Asada, Ryuta 23 January 2014 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(医学) / 乙第12801号 / 論医博第2073号 / 新制||医||1001(附属図書館) / 80845 / 京都大学大学院薬学研究科創薬科学専攻 / (主査)教授 川上 浩司, 教授 松原 和夫, 教授 今中 雄一 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
125

Natural Products from Plants and Algae for Treatment of Alzheimer’s Disease: A Review

Klose, Jana, Griehl, Carola, Roßner, Steffen, Schilling, Stephan 10 October 2023 (has links)
Neurodegenerative disorders including Parkinson’s disease (PD), Huntington’s disease (HD) and the most frequent, Alzheimer’s disease (AD), represent one of the most urgent medical needs worldwide. Despite a significantly developed understanding of disease development and pathology, treatments that stop AD progression are not yet available. The recent approval of sodium oligomannate (GV-971) for AD treatment in China emphasized the potential value of natural products for the treatment of neurodegenerative disorders. Many current clinical studies include the administration of a natural compound as a single and combination treatment. The most prominent mechanisms of action are anti-inflammatory and anti-oxidative activities, thus preserving cellular survival. Here, we review current natural products that are either approved or are in testing for a treatment of neurodegeneration in AD. In addition to the most important compounds of plant origin, we also put special emphasis on compounds from algae, given their neuroprotective activity and their underlying mechanisms of neuroprotection.
126

Finding a Targeted Subgroup with Efficacy for BinaryResponse with Application for Drug Development

Kil, Siyoen January 2013 (has links)
No description available.
127

The Investigation and Development of Novel Molecules, Models and Tools for the Treatment and Study of Schizophrenia

Daya, Ritesh P. January 2017 (has links)
Schizophrenia is a severe mental disorder that can manifest in various ways and is often characterized by the appearance of positive symptoms (hallucinations, delusions), negative symptoms (social and attention impairment) and cognitive dysfunction (thought disorders, memory and executive function impairments). Traditional treatment methodologies involve blocking the dopamine receptor by binding to the same site as dopamine. These treatments are largely inadequate and lead to an array of adverse side effects. Side effects include weight gain, diabetes, and movement disorders; which critically limit the therapeutic value of antipsychotic drug treatment. Limited symptom control and severe adverse effects have led to poor drug adherence and a deprived quality of life for patients suffering from schizophrenia. The complex etiology of schizophrenia combined with a lack of effective translational models and tests to represent and assess the illness have hindered drug development. Evidently, there is a strong demand for a new generation of pharmaceuticals and an improved translational pipeline for the treatment of schizophrenia. The collection of studies presented here contribute to the advancement of translational tools for drug discovery, the establishment of pre-clinical models to embody the various symptoms, and the development of a novel drug candidate for schizophrenia. Allosteric modulation of G-protein coupled receptors is evolving as a new wave of therapy with promising implications for various CNS disorders. Allosteric compounds regulate binding without blocking the receptor. PAOPA, a dopamine D2 receptor allosteric modulator, prevents and treats schizophrenia-like symptoms in pre-clinical animal models of schizophrenia with no apparent adverse effects. The studies outlined in this thesis further categorize PAOPA as a novel therapeutic candidate for schizophrenia. Moreover, the findings presented here provide further insight into the potential therapeutic mechanism of action of PAOPA and set the foundation for the development of a new generation of antipsychotic drugs. These studies constitute an innovative approach to expanding research in the field of drug development for schizophrenia. / Thesis / Doctor of Philosophy (PhD)
128

Clerodane diterpenes from Polyalthia longifolia (Sonn) Thw. var. pendula: Potential antimalarial agents for drug resistant Plasmodium falciparum infection.

Gbedema, Stephen Y., Bayor, M.T., Annan, K., Wright, Colin W. 07 1900 (has links)
No / Background Plasmodium falciparum drug resistance is a major public health challenge in sub-Sahara Africa. Many people are now resorting to the use of herbs in managing malaria due to the increasing treatment failures with the conventional drugs. In this study the ethanolic extract of Polyalthia longifolia (Sonn) Thw. var. pendula, a variety fondly used in folklore medicine in Ghana was investigated for potential antimalarial drug development. Method The ethanolic extract of P. longifolia (Sonn) Thw. var. pendula stem bark was screened against the multidrug resistant, K1 strain of P. falciparum by the parasite lactate dehydrogenase (pLDH) assay and a good antiplasmodial activity (IC50 22.04 ± 4.23 µg/ml) was observed which led to further chromatographic analysis in search for actives. Results Bioassay guided fractionation of the extract yielded; three clerodane diterpenes [16-hydroxycleroda-3,13-dien-16,15-olide (1), 16-oxocleroda-3,13E-dien-15-oic acid (2) and 3,16-dihydroxycleroda-4(18),13(14)Z-dien-15,16-olide (3)], a steroid [beta-stigmasterol (4)] and two alkaloids [darienine (5) and stepholidine (6)]. While compounds 4, 5 and 6 exhibited weak antiplasmodial activity (IC50 22–105 µg/ml), the clerodane diterpenes exhibited significantly potent (p<0.005) blood schizonticidal activity (IC50: 3–6 µg/ml). This is the first report of the antiplasmodial activity of compounds 2 and 3. In combination assay with chloroquine, compounds 1, 2, 3 and 5 antagonized the antiplasmodial activity of chloroquine while 4 and 6 demonstrated a synergistic action. Conclusion The potent antiplasmodial activity of the extract of P. longifolia (Sonn) Thw. var. pendula and compounds therein strongly suggests its usefulness as an antimalarial agent and supports its inclusion or exploitation in formulations of herbal remedies for malaria in Ghana.
129

Thermal and in situ x-ray diffraction analysis of a dimorphic co-crystal 1:1 caffeine-glutaric acid

Vangala, Venu R., Chow, P.S., Schreyer, M., Lau, G., Tan, R.B.H. 23 December 2015 (has links)
Yes / Spurred by the enormous interest in co-crystals from the pharmaceutical industry, many novel co-crystals of active pharmaceutical ingredients have been discovered in recent years and this has in turn led to an increasing number of reports on polymorphs of co-crystals. Hence, a thorough characterization and understanding of co-crystal polymorphs is a valuable step during drug development. The purpose of this study is to perform in situ structural analysis and to determine thermodynamic stability of a dimorphic co-crystal system, 1:1 caffeine-glutaric acid (CA-GA, Forms I and II). We performed thermal and structural characterizations by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), hot-stage microscopy (HSM), slurry and in situ variable temperature X-ray diffraction (VTXRD). For completeness, we have also re-determined crystal structures of CA-GA Forms I and II at 180 K using single crystal X-ray diffraction. Our results revealed that Form II is stable and Form I is metastable at ambient conditions. Further, the results suggest that the dimorphs are enantiotropically related and the transition temperature is estimated to be 79 Celcius degrees. / This work was supported by Science and Engineering Research Council of A*STAR (Agency for Science, Technology and Research), Singapore.
130

Spectroscopic (FT-IR, FT-Raman, and 13C SS-NMR) and quantum chemical investigations to provide structural insights into nitrofurantoin–4-hydroxybenzoic acid cocrystals

Shukla, A., Khan, E., Alsirawan, M.H.D. Bashir, Mandal, R., Tandon, P., Vangala, Venu R. 04 December 2019 (has links)
Yes / Cocrystallization is an attractive approach to improving the physicochemical properties of active pharmaceutical ingredients (APIs), which have great potential in drug development. Accordingly, there is a growing need to understand the physicochemical changes that occur upon co-crystallisation. This work focuses on the combined use of spectroscopy and density functional theory (DFT) calculations to understand the molecular structure, hydrogen bond interactions and physicochemical properties of a pharmaceutical cocrystal. Solid-state NMR (ssNMR) spectroscopy can provide detailed molecular structure information on pharmaceutical cocrystals and complexes. It is non-destructive and usually provides deep structural insights that complement well with vibrational spectroscopy. In this work, a cocrystal of an antibiotic drug, nitrofurantoin (NF), with 4-hydroxybenzoic acid (4HBA) is examined to understand the capability of multiple spectroscopic techniques such as infrared (IR), Raman and solid-state NMR spectroscopies, and to confirm the molecular structure and hydrogen bonding of cocrystal systems. The results of IR and Raman spectroscopy showed that for the cocrystal formation, NF and 4HBA molecules interact through N–H⋯O–H interactions between the imide N–H of nitrofurantoin and the phenolic –OH of 4-hydroxybenzoic acid, and these interactions are also confirmed by natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) analyses. It is critical to understand whether a given cocrystal, upon conceiving a modified crystalline structure compared to that of its API, shows enhanced physical and chemical properties or not. Computationally, it is found that the NF–4HBA cocrystal shows softer (more reactive) behaviour in comparison to NF as its cocrystal, NF–4HBA, has a low band gap in comparison to the API, NF. These results demonstrate that the quantum chemical approach predicts accurately how to relate cocrystal with its physical and chemical properties. / BSR meritorious fellowship scheme. The Newton-Bhabha PhD placement award (2017). The Royal Society Seed Corn Research Grant (2018-19)

Page generated in 0.1314 seconds