• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 18
  • 18
  • 11
  • 10
  • 10
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal and in situ x-ray diffraction analysis of a dimorphic co-crystal 1:1 caffeine-glutaric acid

Vangala, Venu R., Chow, P.S., Schreyer, M., Lau, G., Tan, R.B.H. 23 December 2015 (has links)
Yes / Spurred by the enormous interest in co-crystals from the pharmaceutical industry, many novel co-crystals of active pharmaceutical ingredients have been discovered in recent years and this has in turn led to an increasing number of reports on polymorphs of co-crystals. Hence, a thorough characterization and understanding of co-crystal polymorphs is a valuable step during drug development. The purpose of this study is to perform in situ structural analysis and to determine thermodynamic stability of a dimorphic co-crystal system, 1:1 caffeine-glutaric acid (CA-GA, Forms I and II). We performed thermal and structural characterizations by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), hot-stage microscopy (HSM), slurry and in situ variable temperature X-ray diffraction (VTXRD). For completeness, we have also re-determined crystal structures of CA-GA Forms I and II at 180 K using single crystal X-ray diffraction. Our results revealed that Form II is stable and Form I is metastable at ambient conditions. Further, the results suggest that the dimorphs are enantiotropically related and the transition temperature is estimated to be 79 Celcius degrees. / This work was supported by Science and Engineering Research Council of A*STAR (Agency for Science, Technology and Research), Singapore.
2

A critical assessment of the methods for intercalating anionic surfactants in layered double hydroxides

Moyo, Lumbidzani 30 November 2009 (has links)
The intercalation of surfactant anions, namely sodium dodecyl sulphate, sodium benzene sulphonate and lauric acid, into commercial layered double hydroxides (LDH-CO3) with approximate composition [Mg0.654AI0.346 (OH)2](CO3)0.173.0.5H2O] was explored. LDH-CO3 is commercially available in bulk form owing to its large scale applications as a PVC stabiliser and acid scavenger in polyolefins. It is therefore of interest to investigate intercalation methods using LDH-CO3 as starting material. The intercalation method used was compared with the pre existing procedures, for instance the co-precipitation, ion exchange and regeneration methods. Due to the tenacity with which the carbonate ion is held in LDH-CO3, direct ion exchange is an intricate matter. Hence, in the regeneration method the carbonate ion is removed by thermal treatment and the LDH-surfactant is obtained by reaction of the LDH and surfactant in an aqueous medium. Nevertheless, the resulting products are impure and poorly crystallised, and only partial intercalation is achieved. The underlying principle of the current method is protonation of the carbonate anion to a monovalent anion that is easily exchanged with surfactant anions. Improved results were obtained when water-soluble organic acids were used, the most suitable being lower aliphatic carboxylic acids, e.g. acetic, butyric and hexanoic acid. In contrast, higher linear aliphatic carboxylic acids are preferentially intercalated to the anionic surfactants. In both cases the carboxylic acids are assumed to assist intercalation by facilitating the elimination of the carbonate ions present in the anionic clay galleries. X-ray diffraction analysis, thermal analysis and infrared spectroscopy confirmed the monolayer intercalation of LDH-dodecyl sulphate and LDH-dodecylbenzene sulphonate. In contrast, LDH-laurate featured a bilayer structure. / Dissertation (MSc)--University of Pretoria, 2009. / Chemistry / unrestricted
3

Improving XRD Analysis with Machine Learning

Drapeau, Rachel E. 14 August 2023 (has links) (PDF)
X-ray diffraction analysis (XRD) is an inexpensive method to quantify the relative proportions of mineral phases in a rock or soil sample. However, the analytical software available for XRD requires extensive user input to choose phases to include in the analysis. Consequently, analysis accuracy depends greatly on the experience of the analyst, especially as the number of phases in a sample increases (Raven & Self, 2017; Omotoso, 2006). The purpose of this project is to test whether incorporating machine learning methods into XRD software can improve the accuracy of analyses by assisting in the phase-picking process. In order to provide a large enough sample of X-ray diffraction (XRD) patterns and their known compositions to train the machine learning models, I created a dataset of 1.5 million calculated XRD patterns of realistic mineral mixtures. These synthetic XRD patterns were calculated using crystal structure files from the American Mineralogist Crystal Structure Database (AMCSD) with mineral occurrence data from the Mineral Evolution Database (MED) to mimic geologic knowledge used by expert analysts. Using this dataset, I trained and refined a variety of machine learning models to determine which model is most accurate in identifying the correct mineral phases.
4

Porous Ge@C materials via twin polymerization of germanium(II) salicyl alcoholates for Li-ion batteries

Kitschke, Philipp, Walter, Marc, Rüffer, Tobias, Seifert, Andreas, Speck, Florian, Seyller, Thomas, Spange, Stefan, Lang, Heinrich, Auer, Alexander A., Kovalenko, Maksym V., Mehring, Michael 08 February 2016 (has links) (PDF)
The germylenes, germanium(II) 2-(oxidomethyl)phenolate (1), germanium(II) 4-methyl-2-(oxidomethyl)phenolate (2) and germanium(II) 4-bromo-2-(oxidomethyl)phenolate (3) were synthesized and their thermally induced twin polymerization to give organic–inorganic hybrid materials was studied. The compounds 1–3 form oligomers including dimers, trimers and tetramers as a result of intermolecular coordination of the benzylic oxygen atom to germanium. The structural motifs were studied by single crystal X-ray diffraction analysis and DFT-D calculations. Thermally induced twin polymerization of these germylenes gave hybrid materials based on germanium-containing phenolic resins. Carbonization of these resins under reductive conditions resulted in porous materials that are composed of germanium and carbon (Ge@C materials), while oxidation with air provided non-porous germanium dioxide. The porous Ge@C materials were tested as potential anode materials for rechargeable Li-ion batteries. Reversible capacities of 540 mA h g−1 were obtained at a current density of 346 mA g−1 without apparent fading for 100 cycles, which demonstrates that germanium is well accessible in the hybrid material. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
5

From molecular germanates to microporous Ge@C via twin polymerization

Kitschke, Philipp, Walter, Marc, Rüffer, Tobias, Lang, Heinrich, Kovalenko, Maksym V., Mehring, Michael 31 March 2016 (has links) (PDF)
Four molecular germanates based on salicyl alcoholates, bis(dimethylammonium) tris[2-(oxidomethyl)phenolate(2-)]germanate (1), bis(dimethylammonium) tris[4-methyl-2-(oxidomethyl)phenolate(2-)]germanate (2), bis(dimethylammonium) tris[4-bromo-2-(oxidomethyl)phenolate(2-)]germanate (3) and dimethylammonium bis[2-tert-butyl-4-methyl-6-(oxidomethyl)phenolate(2-)][2-tert-butyl-4-methyl-6-(hydroxymethyl)phenolate(1-)]germanate (4), were synthesized and characterized including single crystal X-ray diffraction analysis. In the solid state, compounds 1 and 2 exhibit one-dimensional hydrogen bonded networks, whereas compound 4 forms separate ion pairs, which are connected by hydrogen bonds between the dimethylammonium and the germanate moieties. The potential of these compounds for thermally induced twin polymerization (TP) was studied. Germanate 1 was converted by TP to give a hybrid material (HM-1) composed of phenolic resin and germanium dioxide. Subsequent reduction with hydrogen provided a microporous composite containing crystalline germanium and carbon (Ge@C – C-1, germanium content ∼20%). Studies on C-1 as an anode material for Li-ion batteries revealed reversible capacities of ∼370 mA h gGe@C−1 at a current density up to 1384 mA g−1 without apparent fading for 500 cycles. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
6

Studium chování betonů při působení vysokých teplot / Studying the behavior of concrete at high temperatures

Fiala, Jiří January 2015 (has links)
This thesis deals with the behavior of cement concrete at high temperature with a focus on the impact behavior of aggregate, cement type and polypropylene fiber reinforcement. The theoretical part describes the issue of cement concrete at high temperatures, especially processes in the cement matrix, aggregates and polypropylene fibers. Furthermore, theoretical part describes the selection of a suitable type of cement and aggregates in concrete exposed to high temperatures. In the experimental part was designed the concrete composition with various kinds different types of aggregates and two types of cements. The temperature stress of test samples was performed according to ISO standard temperature curve 834. Subsequently, was made the verification of the physic-mechanical properties such as changes in bulk density and compressive strength after heat load. Moreover, the surface appearance of samples after heat load was evaluated, especially the occurrence of samples, the crack width and explosive spalling. Mineralogical composition changes of prepared samples before and after heat load were observed via X-ray diffraction analysis. Finally, we made a photogrammetry on a test plates after heat load which defined the size of the area and depth of spalling concrete surface.
7

Studium částic různých kosmetických pigmentů / Study of particles of various cosmetic pigments

Cerevatova, Kristina January 2020 (has links)
The main focus areas of this master thesis include the writing of a literature review, which contains an overview and segregation of pigments which are used in the preparation of cosmetic products. The thesis is focused on the properties and characterization of pigments for use in cosmetology. The following focus is on legislation, more specifically on pigments that the cosmetic industry allows, limits and does not allow. The main part of this thesis is an overview of methods for the characterization of pigments. The practical part deals with the characterization of particles of selected cosmetic pigments by applying methods for determination of color, elemental and phase composition, particle size and morphology. The thesis is concluded by evaluation of the achieved results.
8

Coordination compounds with fused oxamato/oxamidato ligands: A new approach to strengthen and tailor magnetic exchange interactions

Weheabby, Saddam 20 June 2019 (has links)
This dissertation deals with the synthesis and characterization of mono- and binuclear Cu(II)- and Ni(II)-containing bis(oxamato) and bis(oxamidato) complexes and their use as building blocks to produce tri- and tetranuclear complexes via the “complex-as-ligand/complex-as-metal strategy”. The magnetic and electrochemical properties of the respective bis(oxamato)/bis(oxamidato) complexes are described. This work focuses on the enhancement of the intramolecular magnetic exchange coupling J of multinuclear complexes by making use of oxamato/oxamidato fused ligands to alter the coordination sphere around the Cu II ions systematically. Furthermore, variation of the central N,N'-bridges of the fused oxamato/oxamidato ligands and applying different donor-atom sets, as well as the incorporation of different transition metal ions, have been performed in order to investigate to which extent the steric and electronic nature of the ligands influence the electrochemical behavior of the corresponding complexes. A linear correlation between the magnetic exchange couplings J and/ or the redox potential with optical properties of the new series of binuclear transition metal complexes were observed and discussed. In addition, the synthesis of large cyclic polyoxamides (24-mer H8L2 and 36-mer H12L3) is discussed. Their use as potentially multidentate macrocycles for coordination of transition metal ions is reported. The binding properties of H8L2 towards selected inorganic salts are discussed. / Die vorliegende Dissertation beschäftigt sich mit der Synthese und Charakterisierung von mono- und zweikernige Cu(II)- und Ni(II) bis(oxamato) und bis(oxamidato) Komplexen, sowie ihrer Nutzung als Baueinheiten zur Herstellung von tri- und tetranuklearen Komplexen via der 'Komplex-als-Ligand/Komplex-als-Metall Strategie'. Zusätzlich erfolgt eine Beschreibung des magnetischen und elektrochemischen Verhaltens dieser Komplexe. Ein Schwerpunkt dieser Arbeit liegt in der Verstärkung der intramolekularen magnetischen Austauschkopplung J der multinuklearen Komplexe durch die Verwendung einer neuartigen Fusion von Oxamato- und Oxamidato-Ligandeneinheiten, sowie einer systematischen Variation der Koordinationssphäre des Cu II-Ions. Weiterhin erfolgte die Vx^ariation zentrierter N,N'-Brücken, und unterschiedlicher Donoratome der Liganden als auch eingebetteter ÜbergangsmetallIonen zur Untersuchung des Einflusses räumliche und elektronische Eigenschaften der vorangehenden Struktureinheiten auf die elektrochemische Charakteristika. Ein linearer Zusammenhang zwischen der magnetischen Austauschkopplung J bzw. dem Redoxpotential sowie den optischen Eigenschaften der zweikernige Übergangsmetallkomplexe wird diskutiert. Die Synthese von zyklischen Polyoxamiden (24-mer H 8 L 2 und 36-mer H 12 L 3 ) und deren Verwendung als neuartige und potentiell multidentate Liganden für die Koordinationschemie sind vorgestellt. Untersuchung der Bindungseigenschaften von H 8 L 2 bezüglich unterschiedlicher anorganische Salze wird diskutiert.
9

Porous Ge@C materials via twin polymerization of germanium(II) salicyl alcoholates for Li-ion batteries

Kitschke, Philipp, Walter, Marc, Rüffer, Tobias, Seifert, Andreas, Speck, Florian, Seyller, Thomas, Spange, Stefan, Lang, Heinrich, Auer, Alexander A., Kovalenko, Maksym V., Mehring, Michael 08 February 2016 (has links)
The germylenes, germanium(II) 2-(oxidomethyl)phenolate (1), germanium(II) 4-methyl-2-(oxidomethyl)phenolate (2) and germanium(II) 4-bromo-2-(oxidomethyl)phenolate (3) were synthesized and their thermally induced twin polymerization to give organic–inorganic hybrid materials was studied. The compounds 1–3 form oligomers including dimers, trimers and tetramers as a result of intermolecular coordination of the benzylic oxygen atom to germanium. The structural motifs were studied by single crystal X-ray diffraction analysis and DFT-D calculations. Thermally induced twin polymerization of these germylenes gave hybrid materials based on germanium-containing phenolic resins. Carbonization of these resins under reductive conditions resulted in porous materials that are composed of germanium and carbon (Ge@C materials), while oxidation with air provided non-porous germanium dioxide. The porous Ge@C materials were tested as potential anode materials for rechargeable Li-ion batteries. Reversible capacities of 540 mA h g−1 were obtained at a current density of 346 mA g−1 without apparent fading for 100 cycles, which demonstrates that germanium is well accessible in the hybrid material. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
10

Синтез и люминесцентные свойства нанопористых структур анодированного оксида алюминия : магистерская диссертация / Synthesis and luminescent properties of anodic aluminum oxide nanoporous structures

Ильин, Д. О., Ilin, D. O. January 2015 (has links)
Цель магистерской диссертации состояла в изучении влияния режимов анодирования и условий последующей температурной обработки на структурные и люминесцентные свойства нанопористого оксида алюминия. Рассмотрены основные структурные особенности анодированного оксида алюминия (АОА) и методики получения его упорядоченных структур, его области применения и люминесцентные свойства. Успешно синтезирована серия из 20 образцов АОА в условиях варьирования электрохимических, временных и температурных режимов. Проведена аттестация полученных образцов методами сканирующей электронной микроскопии и рентгеноструктурного анализа. Проведена статистическая обработка полученных снимков с помощью анализатора изображений SIAMS 700. Проанализированы зависимости среднего диаметра пор от напряжения анодирования и толщины оксидного слоя от времени анодирования. Рассчитана средняя скорость роста АОА для гальвано- и потенциостатических режимов. Изучены особенности и трансформация спектров диффузного отражения, фото- и катодолюминесценции образцов АОА в зависимости от условий электрохимического окисления и последующей термообработки. На основе сравнительного анализа литературных данных проведена идентификация активных центров свечения собственной (F-, F+-центры) и примесной (комплексы C2O42- и HC2O4-, ионы Cr3+ и Mn4+) природы. Рассмотрены перспективы дальнейших исследований и возможных применений синтезируемых мембран анодированного оксида алюминия. / The aim of this Master paper is to study the effect of anodizing modes and subsequent temperature treatment on structural and luminescent properties of nanoporous anodic alumina. Structural features of anodic aluminum oxide (AAO), its ordered structures obtaining methods, fields of application and luminescent properties were discussed. A series of twenty samples varying electrochemical, time and temperature regimes was obtained. Obtained samples were characterized by scanning electron microscopy and X-ray diffraction analysis techniques. Images of structures were quantitavely analyzed using SIAMS 700 software package. It was studied how average pore diameter and oxide layer thickness depend on anodizing voltage and duration accordingly. Average AAO growth rate for galvanostatic and potentiostaic modes was calculated. Features and transformation of diffuse reflection, photo- and cathodoluminescence of AAO samples obtained under various electrochemical oxidation conditions and after subsequent temperature treatment were studied. Active emission centers of intrinsic (F-, F+-centers) and impurity (C2O42- and HC2O4- complexes, Cr3+ и Mn4+ ions) nature were identified on the basis of literature data comparative analysis. Further promising directions of studies and possible applications of synthesized AAO membranes were discussed.

Page generated in 0.1386 seconds