• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Critical analysis of aging models for lithium-ion second-life battery applications

Ganesh, Sai Vinayak 01 October 2020 (has links)
No description available.
2

Optimization analysis of secondlifebatteries integration in fastchargersfor electric vehicles inSpain

de Maio, Pasquale January 2017 (has links)
This project investigates the viability of using reconditioned batteries, which have lost part of their original capacity while powering electric vehicles (EVs), to minimize the expenses of fast-charging infrastructures under the three charging scenarios where fast-charging mode is likely to be needed the most. The analysis is conducted for the Spanish scenario and considers the retail electricity tariff that best suits the requirements of a FCS. The economic analysis is performed on an annual basis and is tackled with an optimization algorithm, formulated as a mixed-integer linear programming problem and run on MATLAB. The expected lifetime of the ESS, being made of reused automotive cells, is estimated with a semi-empirical approach, using an iterative process and implemented in MATLAB. A sensitivity analysis is conducted on three input parameters that were identified to have a considerable impact on the system design and performance.   Overall, results show that with current figures energy storage integration in FCSs is viable as it effectively reduces the infrastructure expenses in all scenarios. Peak-shaving is identified as the main source of cost savings while demand shifting is not effective at all. The latter is further discussed in the sensitivity analysis and some considerations are elaborated. The most profitable scenario for storage integration is the case of a fast-charger located in a urban environment while, surprisingly, the lowest cost savings are obtained in the highway case. The sensitivity analysis illustrates the impact and effects that electricity prices and specific cost of both the power converter and the second-life batteries produce on the optimal system design. Moreover, charging demand profiles are deeply analyzed and their main implications highlighted.
3

A case study about the potential of battery storage in Culture house : Investigation on the economic viability of battery energy storage system with peak shaving & time-of-use application for culture house in Skellefteå.

Singh, Baljot January 2021 (has links)
The energy demand is steadily increasing, and the electricity sector is undergoing a severe change in this decade. The primary drivers, such as the need to decarbonize the power industry and megatrends for more distributed and renewable systems, are resulting in revolutionary changes in our lifestyle and industry. The power grid cannot be easily or quickly be upgraded, as investment decisions, construction approvals, and payback time are the main factors to consider. Therefore, new technology, energy storage, tariff reform, and new business models are rapidly changing and challenging the conventional industry. In recent times, industrial peak shaving application has sparked an increased interest in battery energy storage system (BESS).  This work investigated BESS’s potential from peak shaving and Time-of-use (TOU) applications for a Culture-house in Skellefteå. Available literature provides the knowledge of various BESS applications, tariff systems, and how battery degradation functions. The predicted electrical load demand of the culture-house for 2019 is obtained from a consultant company Incoord. The linear optimization was implemented in MATLAB using optimproblem function to perform peak shaving and time-of-use application for the Culture-hose BESS. A cost-optimal charging/discharging strategy was derived through an optimization algorithm by analyzing the culture-house electrical demand and Skellefteå Kraft billing system. The decisional variable decides when to charge/discharge the battery for minimum battery degradation and electricity purchase charges from the grid.   Techno-economic viability is analyzed from BESS investment cost, peak-power tariff, battery lifespan, and batter aging perspective. Results indicate that the current BESS price and peak-power tariff of Skellefteå Kraft are not suitable for peak shaving. Electricity bill saving is too low to consider TOU application due to high battery degradation. However, combining peak shaving & TOU does generate more profit annually due to additional savings from the electricity bill. However, including TOU also leads to higher battery degradation, making it not currently a viable application. A future scenario suggests a decrease in investment cost, resulting in a shorter payback period.  The case study also analyses the potential in the second-life battery, where they are purchased at 80 % State of Health (SoH) for peak shaving application. Second-life batteries are assumed to last until 70 % or 60 % before End of Life (EOL). The benefit-cost ratio indicates that second-life batteries are an attractive investment if batteries can perform until 60% end of life, it would be an excellent investment from an economic and sustainability perspective. Future work suggests integrating more BESS applications into the model to make BESS an economically viable project.

Page generated in 0.1156 seconds