Spelling suggestions: "subject:"anda solutions."" "subject:"ando solutions.""
341 |
An Experimental Study of the Effects of Aqueous Polymer Solutions on a Liquid Boundary LayerShen, Chi-Hung 05 1900 (has links)
<p> This thesis is an experimental study of the effects of injecting dilute polymer solutions into a turbulent boundary layer developed on a flat plate submerged in water.</p> <p> A flat plate having a plexiglass surface together with a separate leading edge piece were specially designed for observing the boundary layer phenomena. Aqueous polymer solutions were
introduced into the boundary layer through a slit situated in the leading edge piece. Hot-film anemometer technique was employed in the measurements of velocity profiles, turbulence intensities and lateral correlation coefficients at several locations on the plate. The investigation was carried out for two Reynolds Numbers, based on the length of the plate, of 2.4 x 10^5 and 6.4 x 10^5. The variation in the drag force with respect to the polymer concentrations and the injection rates was assessed based on the velocity profile data. It was found that the momentum diffusivity was smaller than for pure water, and that the presence of the polymer molecules seemed to promote a more uniform distribution of the sizes of the turbulence eddies.</p> / Thesis / Master of Engineering (MEngr)
|
342 |
On mesh quality considerations for the discontinuous Galerkin methodCollins, Eric M 08 August 2009 (has links)
It is widely accepted that the accuracy and efficiency of computational fluid dynamics (CFD) simulations is heavily influenced by the quality of the mesh upon which the solution is computed. Unfortunately, the computational tools available for assessing mesh quality remain rather limited. This report describes a methodology for rigorously investigating the interaction between a flow solver and a variety of mesh configurations for the purposes of deducing which mesh properties produce the best results from the solver. The techniques described herein permit a more detailed exploration of what constitutes a quality mesh in the context of a given solver and a desired flow regime. In the present work, these newly developed tools are used to investigate mesh quality as it pertains to a high-order accurate discontinuous Galerkin solver when it is used to compute inviscid and high-Reynolds number flows in domains possessing smoothly curving boundaries. For this purpose, two flow models have been generated and used to conduct parametric studies of mesh configurations involving curved elements. The results of these studies allow us to make some observations regarding mesh quality when the discontinuous Galerkin method is used to solve these types of problems. Briefly, we have found that for inviscid problems, the mesh elements used to resolve curved boundaries should be at least third order accurate. For viscous problems, the domain boundaries must be approximated by mesh elements that are of the same order as the polynomial approximation of the solution if the theoretical order of accuracy of the scheme is to be maintained. Increasing the accuracy of the boundary elements to at least one order higher than the solution approximation typically results in a noticeable improvement in the computed error norms. It is also noted that C1-continuity of the mesh is not required at element interfaces along the boundary.
|
343 |
Electrodeposition of gallium arsenide from aqueous solutionsYang, Ming-Chang January 1990 (has links)
No description available.
|
344 |
On the Existence of Solutions to Discrete, Two Point, Non-linear Boundary Value ProblemsHaught, Damon January 2010 (has links)
No description available.
|
345 |
Material characterization of polymer solutions and surfactant systems using free surface measurements /Tan, Guowen. January 2002 (has links)
No description available.
|
346 |
Time-Dependent Scaling Solutions in D Dimensional SupergravityBayntun, Allan I. January 2008 (has links)
<p> We look for time-dependent solutions to a general class of supergravity models in an arbitrary amount of dimensions. Previously, many static solutions of these models have been found and studied, of which a subclass of these solutions support membrane-like configurations. While many properties of these solutions are known, their dynamics - and therefore stability - are not. We follow this motivation, and investigate the possibility of time dependent solutions that will also support this membrane configuration. Under various conditions, it turns out this is the case, bringing a better understanding to the stability of these branes. In addition, the form of the time dependence found suggest possible applications of supergravity to cosmological models.</p> / Thesis / Master of Science (MSc)
|
347 |
The catalytic hydrogenolysis of sugar for the production of an automotive antifreezeBooth, Thomas W. January 1949 (has links)
M.S.
|
348 |
Structure of the electrical double layer at aqueous gold and silver interfaces for saline solutionsHughes, Zak, Walsh, T.R. 13 March 2019 (has links)
No / We report the structure of the electrical double layer, determined from molecular dynamics simulations, for a range of saline solutions (NaCl, KCl, MgCl2 and CaCl2) at both 0.16 and 0.60 mol kg(-1) on different facets of the gold and silver aqueous interfaces. We consider the Au/Ag(111), native Au/Ag(100) and reconstructed Au(100)(5×1) facets. For a given combination of metallic surface and facet, some variations in density profile are apparent across the different cations in solution, with the corresponding chloride counterion profiles remaining broadly invariant. All density profiles at the higher concentration are predicted to be very similar to their low-concentration counterparts. We find that each electrolyte responds differently to the different metallic surface and facets, particularly those of the divalent metal ions. Our findings reveal marked differences in density profiles between facets for a given metallic interface for both Mg(2+) and Ca(2+), with Na(+) and K(+) showing much less distinction. Mg(2+) was the only ion for which we find evidence of materials-dependent differences in interfacial solution structuring between the Ag and Au. / Veski, Air Force Office for Scientific Research grant #FA9550-12-1-0226
|
349 |
Design, fabrication and testing of a microfluidic channel platform for sensor chip manipulation and data retreivalChen, Caipeng January 2013 (has links)
Thesis (M.Sc.Eng.)PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you. / The exploration and production of oil and gas resources require innovative information acquisition strategies for wellbore environments to improve reservoir management. In this study, a microfluidic channel data retrieval platform was proposed for multiple sensor chip manipulation, wireless charging and information extraction in fluidic mediums.
The working principle of near-field magneto inductive coupling was investigated and a prototype of a microfluidic channel integrated with a spiral reader antenna was designed and fabricated. Sensor chip manipulations and dynamic couplings between readers and sensors were demonstrated inside the proposed microfluidic channel.
Furthermore, solid fluidic interaction between sensors and flows was analyzed. Comsol simulation was conducted to quantitatively characterize flow drag forces inside the channel. To prevent communication interference between sensors in the proposed coupling region, sensor separation strategies based on side channel and meander channel design were proposed and realized to separate sensors one by one by the desired distance.
To enhance the efficiency of the sensor separation process, a new channel design based on a spinning blade with real-time image processing was also developed for feedback control of separation.
Additionally, a 500-micron cubic sensor antenna was cut by a dicing saw and assembled into an 800-micron cubic package. Magneto inductive couplings between readers and the assembly package were conducted out of the channel. The results show that the coupling effect is strongly related with the orientation between the reader and the assembly package. Finally, the assembly package control with desired velocity and direction in oil mediums was successfully realized inside the channel. / 2999-01-01
|
350 |
Prediction of electrolyte solution properties using a combined Debye-Huckel, association and solvation modelKirby, Carl Scott 29 November 2012 (has links)
This paper presents a semi-theoretical computer model that estimates individual and mean ionic activity coefficients in the NaCl-NaOH-HCl-H₂O system at 25°C. This extra thermodynamic model incorporates long-range electrostatic ion-ion interaction (Debye- Hückel effects), short-range ion-ion interactions (ion association), and short-range ion-solvent interactions (hydration). The activity of water in NaCl, NaOH, and HCl solutions is fit with maximum deviations from experimental values of 0.78%, 0.79%, and 2.09%, respectively. Ion size parameters, å, were modified slightly from literature values. Hydration numbers for individual species were chosen on the basis of best fit. Ion pair dissociation constants of 15.0 were chosen for reactions involving NaCl(aq), NaOH(aq), and HCl(aq) ion pairs. The model predicts individual ionic activity coefficients for ions and ion pairs, and predicts mean molal ionic activity coefficients for NaCl, NaOH, and HCl for solutions up to 6.0 m with maximum deviations from experimental values of 0.73%, 1.77%, and 3.86%,respectively. The estimated degree of dissociation varies widely if the ion pair dissociation constants are varied between 5 and 1000. Calculated values for trace activity coefficients, saturation solubility, and vapor pressure compare favorably to experimental data. / Master of Science
|
Page generated in 0.0915 seconds