• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 20
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 54
  • 40
  • 38
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Androgen controlled secondary sexual characters in the male African clawed frog, Xenopus laevis, as potential biomarkers for endocrine disruptor contaminants (with special reference to fungicides) in aquatic systems

Archer, Edward 04 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Endocrine disrupting contaminants (EDCs) coming from households, industrial parks, wastewater (sewage) treatment and agricultural areas have been shown to pollute our freshwater systems. These contaminants may disrupt early development and reproductive systems in freshwater organisms (fish, frogs and crocodile species) as well as humans. Agricultural pesticides are shown as a large contributor to endocrine disruption activity in water catchment areas through spray drift, runoff, and/or groundwater leeching. Although South Africa is recognized as the largest consumer of agricultural pesticides in Africa, few studies have been undertaken to assess the prevalence and impact of endocrine disorders activities of pesticides in local freshwater systems. Recent studies have suggested that various agricultural pesticides, especially fungicides, might have adverse effects on the male endocrine system. There is therefore a need to test for a wider range of endocrine disrupting activities (mechanisms) in environmental waters other than conventional estrogenic (feminising) activities. Furthermore, there is a need to establish biomarkers in endemic species (bio-indicators) to show endocrine disruption in vertebrates (therefore also apply to humans). The specific objectives of the study were to: (1) describe and confirm the use of androgen-controlled breeding glands in male African clawed frogs (Xenopus laevis) as a biomarker for (anti)androgenic endocrine disruption activity (Chapter 2), (2) to investigate the premature development of breeding glands in X. laevis tadpoles (pre-metamorphic) and young froglets (post-metamorphic) (Chapter 2), (3) to investigate the disruption of male reproductive traits in adult X. laevis frogs by exposure to substances disrupting two different anti-androgenic endocrine disruption pathways (Chapter 3), (4) screen for (anti)androgenic activity of individual and binary mixtures of pesticides, which are regularly used in agricultural areas in the Western Cape Province of South Africa (Chapter 4), and (5) to test for (anti)androgenic and estrogenic endocrine disrupting activities by making use of in vitro assays as well as adult male X. laevis frogs collected from selected ponds surrounded by vineyards and fruit orchards in the Stellenbosch Winelands. The present study confirmed that male breeding glands can serve as biomarkers for (anti)androgenic endocrine disruption and that male reproductive and secondary sexual characteristics can be disrupted through two different biochemical control pathways. The study also confirmed that the expression of androgen-regulated breeding glands can be stimulated in pre-metamorphic tadpoles and immature, post-metamorphic frogs, and can thus be used for (anti)androgenic testing. The rapid testing and predictive value of an in vitro recombinant yeast screen for androgen receptor binding inhibition of selected individual or binary mixtures of pesticides was also confirmed. However, the current study showed that the predicted in vitro (anti)androgenic activity did not always correspond with in vivo (anti)androgenic biomarker outcomes. This It also confirmed that single-cell in vitro assays can be used as a first-level prediction for (anti)androgenic activities of individual or mixtures of agricultural pesticides. This study provides a better understanding for potential mixture interactions of commonly used agricultural pesticides, the hormonal control of secondary sexual characteristics in male frogs and the use of reproduction biomarkers to study long-term effects of endocrine disruptors in local water supplies. / AFRIKAANSE OPSOMMING: Endokriene versteurings-kontaminante (EVKe) wat vanaf huishoudings, industriële parke, afvalwater(riool)-behandeling en landbougebiede kom, besoedel ons varswaterstelsels. Hierdie kontaminante mag versteuring van vroeë ontwikkeling- en voorplantingstelsels in varswater-organismes (vis-, padda- en krokodil-spesies) sowel as die mens inhou. Landbou-plaagdoders word uitgesonder as ’n bydraer van endokriene versteuring-aktiwiteite in wateropvangs-gebiede deur spuitnewel, afloop-water en/of grondwater-deurvloei. Hoewel Suid-Afrika erken word as die grootste verbruiker van landbou-plaagdoders in Afrika, word min studies onderneem om die voorkoms en impak van endokriene versteurings-aktiwiteite van plaagdoders in plaaslike varswaterstelsels te ondersoek. Onlangse studies het voorgestel dat verskeie landbou-plaagdoders, veral swamdoders, nadelige uitwerkings kan hê op die manlike endokriene stelsel. Daar bestaan dus 'n behoefte om te toets vir 'n wyer verskeidenheid van endokriene versteurings-aktiwiteite (meganismes) in omgewingswater anders as konvensionele estrogeniese (vervroulikings) aktiwiteite. Verder bestaan daar ’n behoefte om biomerkers in endemiese spesies te gebruik as bio-indikators van endokriene versteuring in werweldiere (daarom ook van toepassing op die mens). Die spesifieke doelwitte van die studie het ingesluit om: (1) die gebruik van androgeen-beheerde parings- velkliere (“breeding glands”) in manlike platannas (Xenopus laevis) as 'n biomerker vir (anti)androgeniese endokriene versteuring-aktiwiteit te beskryf en bevestig (Hoofstuk 2); (2) ondersoek in te stel na die voortydige ontwikkeling van parings-kliere in X. laevis paddavisse (pre-metamorfose) asook jong paddas (post-metamorfose) as biomerkers van androgeniese (vermanlikheids) aktiwiteite (Hoofstuk 2); (3) ondersoek in te stel na die versteuring van manlike geslags-eienskappe in volwasse X. laevis paddas deur middel van blootstelling aan stowwe wat twee verskillende androgeniese endokrien reaksie-weë verteenwoordig (Hoofstuk 3); (4) toets vir (anti)androgeniese aktiwiteit van individuele en binêre mengsels van landbou-plaagdoders wat gereeld in die Westelike Provinsie van Suid Afrika gebruik word (Hoofstuk 4) en (5) te toets vir (anti)androgeniese en estrogeniese endokriene versteurings aktiwiteite deur gebruik te maak van in vitro toetse asook volwasse manlike X. laevis paddas wat uit geselekteerde damme (omring deur wingerde en vrugte boorde in die Stellenbosch wynland distrik) versamel was. Die huidige studie het bevestig dat die manlike parings-velkliere as biomerkers vir (anti)androgeniese versteuring kan dien en dat manlike voortplanting en sekondêre geslagskenmerke deur twee verskillende biochemiese beheer-weë ontwrig kan word. Die studie het verder bevestig dat die uitdrukking van androgeen-gereguleerde parings-velkliere voortydig gestimuleer kan word in pre-metamorfose paddavissies asook onvolwasse, post-metamorfose paddas. Die vinnige toetsing en voorspellingswaarde van 'n rekombinante in vitro gis toets om binding-inhibisie van die androgeen reseptor deur geselekteerde individuele of binêre mengsels van plaagdoders aan te toon is ook bevestig. Alhoewel, die huidige studie het getoon dat die voorspelde in vitro (anti)androgeniese aktiwiteit nie altyd ooreenstem met in vivo (anti)androgeniese biomerker uitkomstes nie. Hierdie studie bevestig dat enkel-sel in vitro toetse aangewend kan word as eerste vlak- en voorspelling-toetse vir (anti)androgeniese aktiwiteite van enkel of mengsels van landbou-plaagdoders. Sodoende is 'n beter begrip verkry vir potensiële mengsel-interaksies van algemeen-gebruikte landbou plaagdoders, die hormonale beheer van sekondêre geslagskenmerke in manlike paddas asook die aanwending van voortplantingsbiomerkers om langtermyn effekte van endokriene versteurders in plaaslike waterbronne te ondersoek.
22

Imaging brain aromatase by using PET : A way to study anabolic steroid abuse

Takahashi, Kayo January 2008 (has links)
<p>Aromatase is an enzyme that facilitates the conversion of androgens to estrogens and may play a role in mood and mental status. The main theme of this thesis is the imaging of brain aromatase by use of the PET technique. The PET tracer for aromatase, <sup>11</sup>C-labeled vorozole (VOZ) was developed and evaluated by with <i>in vitro</i> and <i>in vivo</i> methods. <i>In vitro</i> experiments using rat brain showed that VOZ was distributed in the medial amygdala, bed nucleus of the stria terminalis and medial preoptic area, regions of the brain known to be rich in aromatase and the K<sub>D</sub> value was determined to be 0.60 nM. The <i>in vivo</i> PET study in rhesus monkey brain revealed that VOZ penetrated the blood-brain barrier and accumulated in the amygdala and hypothalamus. Taken together, VOZ is a good PET tracer for <i>in vivo</i> aromatase imaging with high affinity and high sensitivity.</p><p>This technique was applied to an investigation of brain aromatase under the physiological conditions simulating anabolic-androgenic steroid abuse. A significant increase in VOZ binding by anabolic-androgenic steroids was observed in the bed nucleus of stria terminalis and medial preoptic area in the rat brain. In contrast, no significant change in binding was observed in the medial amygdala. These results indicate that the manner of regulation of aromatase expression might be different in the bed nucleus of stria terminalis and medial preoptic area compared with that in the medial amygdala. The aromatase expression was suggested to be regulated through androgen receptors, as indicated in a study with flutamide treatment. The increased aromatase expression was seen in neurons. The PET study with anabolic steroid-treated rhesus monkeys also showed increased VOZ binding in the hypothalamus but not in the amygdala. The alteration of density of aromatase binding in the hypothalamic area could explain some psychological features of anabolic-androgenic steroid abusers.</p><p>Novel PET tracers for aromatase were developed and examined. The two newly synthesized <sup>18</sup>F-labeled vorozole analogs, [<sup>18</sup>F]FVOZ and [<sup>18</sup>F]FVOO, displayed different characteristics. Both tracers showed similar binding pattern as VOZ; however, [<sup>18</sup>F]FVOO was metabolized very quickly, meaning that this tracer is not suitable as a PET tracer. On the other hand, [<sup>18</sup>F]FVOZ can be an appropriate PET tracer.</p><p>The role of aromatase in the human brain has not been clarified yet. To approach this problem by<i> in vivo</i> methods, we have just started PET studies to explore aromatase expression in humans.</p>
23

Análises morfológicas do epidídimo de ratos pós-púberes e idosos após o tratamento com doses suprafisiológicas de decanoato de nandrolona e o exercício resistido em meio aquático / Morphological analyzes of the epididymis of adults and elderly rats after supraphysiological doses of nandrolone decanoate and resistance exercise in aquatic environment

Brandl, Lana 04 March 2016 (has links)
Made available in DSpace on 2017-07-10T14:17:20Z (GMT). No. of bitstreams: 1 Lana_Branai.pdf: 2297634 bytes, checksum: 8dbbaa1b059e5e38dcdd38ba4a303557 (MD5) Previous issue date: 2016-03-04 / Nowadays, the search for beauty, has caused health problems associated with the use of anabolic androgenic steroid (AAS) and even strenuous exercise, and the male reproductive system is the subject of studies to be sensitive to changes in the concentration of this type of hormone; these changes may also occur with increasing age, causing changes in androgen-dependent organs, like the epididymis. This study aimed to verify if treatment with AAS associated or not to exercise, in Sprague-Dawley rats alters the morphology of the epididymis in adult rats and its chronic effects in the elderly. The training was conducted by jumping into the water, weighing overloading, being considered as resistance exercise in water. The AAS administration occurred by intramuscular injection of nandrolone decanoate (10 mg / kg / week). Epididymal samples were subjected by histological routine of hematoxylin and eosin for morphological and morphometric analysis. It was analyze all parts of the epididymis (initial segment, caput, corpus and cauda) of 56 Sprague-Dawley rats, virgins, with 13 weeks old, divided into eight groups with seven animals each: GC - adults and sedentary; GCi - elderly and sedentary; GN - adults, sedentary treated with AAS; GNi - elderly, sedentary treated with AAS; GE - adults treated with exercise; GEi - elderly treated with exercise; GNE - adults, exercise and treatment with AAS; GNEi - elderly, exercise and treatment with AAS. The results show significant changes in duct diameters; the GE was lower when compared to other groups, and the groups that were used anabolic steroids, had a larger diameter than the other, and these changes occurred mainly in the initial segments. The epithelial height in the initial segment was also considered higher in the groups that administered AAS. The elderly groups tend to return to normal, increasing the parameters of epithelial height and diameter when these were decreased, and lowering them when they were enlarged when compared with the related adult group (with common variable), except at the tail of GNEi. As the results of this study, we can conclude that both treatment in adulthood, with exercise and the use of AAS, changes morphometric and morphological parameters of the epididymis, and its chronic effects can be diminished with age. / Atualmente, a procura pela beleza estética, tem causado problemas de saúde associados ao uso de esteroides androgênicos anabolizantes (EAAs) e até mesmo a exercícios físicos intensos. O sistema genital masculino é alvo de estudos por ser sensível a mudanças na concentração desse tipo de hormônio; essas alterações também podem ocorrer com o aumento da idade, influenciando órgãos androgênio-dependentes, como o epidídimo. Nesse sentido, objetivou-se com esse estudo, verificar se o tratamento com EAAs associado ou não ao exercício físico resistido, em ratos Sprague-Dawley, altera a morfologia do Epidídimo em ratos adultos e seus efeitos a longo prazo em idosos. Foram analisadas todas as porções dos epidídimos (segmento inicial, cabeça, corpo e cauda) de 56 ratos, virgens, da linhagem Sprague-Dawley (com 13 semanas de vida ao iniciarem o experimento), separados em oito grupos com sete animais cada: GC - adultos e sedentários; GCi - idosos e sedentários; GN - adultos, sedentários, tratados com EAA; GNi - idosos, sedentários, tratados com EAA; GE - adultos tratados com exercício; GEi - idosos tratados com exercício; GNE - adultos, exercício e tratamento com EAA; GNEi - idosos, exercício e tratamento com EAA. O treinamento realizado foi exercício resistido em meio aquático (através de saltos na água, com sobrecarga) com duração de oito semanas (três vezes na semana). A administração de EAAs ocorreu pela aplicação intramuscular de Decanoato de Nandrolona (10 mg/kg/semana) também durante oito semanas (duas vezes na semana). Amostras epididimárias passaram pela rotina histológica de hematoxilina e eosina para análise morfológica e morfométrica. Os resultados mostraram alterações significativas nos diâmetros de ductos, sendo que o GE foi menor quando comparado ao controle, e, nos grupos em que foram utilizados anabolizantes, tiveram diâmetro aumentado significativamente, e essas alterações ocorreram principalmente nos segmentos mais iniciais. A altura epitelial, no segmento inicial, também foi maior nos grupos em que foi utilizado anabolizante. Os grupos idosos tenderam a retornar a normalidade, aumentando os parâmetros de altura e diâmetro quando esses estavam diminuídos, e diminuindo-os quando estavam aumentados em comparação ao grupo adulto relacionado (com variável em comum), a não ser na cauda, do GNEi, em que houve aumento significativo. Achados morfológicos indicaram presença de debris celulares em lúmen (GN e GNEi) e infiltrados intersticiais (GN, GNE, GE e GCi). Conforme os resultados desse estudo, pôde-se concluir que tanto o tratamento na fase adulta com exercício, quanto à utilização de EAAs altera parâmetros morfométricos e morfológicos do epidídimo, e que seu efeito crônico pode ser diminuído com a idade.
24

Anabolic Androgenic Steroids and the Brain : Studies of Neurochemical and Behavioural Changes Using an Animal Model

Steensland, Pia January 2001 (has links)
<p>A new group of anabolic androgenic steroid (AAS) users has developed during the last two decades. This group consists primarily of young men interested in improving their physical appearance. Within this group, AAS are sometimes used together with other illicit drugs, alcohol and nicotine. Brutal and violent crimes have been committed under the influence of AAS, possibly because of AAS psychiatric side effects, ranging from increased aggression and psychosis to depression. Unfortunately, the biochemical mechanisms behind these effects are poorly understood.</p><p>In this thesis we used an animal model to study biochemical and behavioural effects of chronic AAS treatment (15 mg/kg/day of nandrolone decanoate for 14 days). The effect on the endogenous opioid peptides and the expression of immediate-early gene protein Fos in various brain regions were studied using radioimmunoassay and immunohistochemistry, respectively. In addition, we studied AAS effect on voluntary alcohol consumption and defensive behaviours, including aggression. The results show that AAS enhance endogenous opioid activity and Fos expression in brain regions regulating reward, aggression and disinhibitory behaviours. An imbalance between two opioid systems with generally opposing effects, the enkephalins with euphoric and the dynorphins with dysphoric effects, was also found. This implies that AAS alter the ability to maintain a stable state of mind and the response to other drugs of abuse. The AAS pre-treated animals enhanced their alcohol intake, were more aggressive and showed lower fleeing and freezing reaction than the controls. In addition, AAS enhanced amphetamine-induced aggression when the amphetamine was given three weeks after the last AAS injection.</p><p>The behavioural and biochemical results found in this thesis, support the hypothesis that use of AAS might lead to the development of dependence and may induce changes in the brain leading to disinhibitory behaviours.</p>
25

Neurosteroids Induce Allosteric Effects on the NMDA Receptor : Nanomolar Concentrations of Neurosteroids Exert Non-Genomic Effects on the NMDA Receptor Complex

Johansson, Tobias January 2008 (has links)
<p>The neurosteroids constitute a group of powerful hormones synthesized and acting in the central nervous system. They participate in a number of important central processes, such as memory and learning, mood and neuroprotection. Their effects emerge from rapid interactions with membrane bound receptors, such as the N-methyl-D-aspartate (NMDA) receptor, the gamma-amino-butyric acid receptor and the sigma 1 receptor. The mechanisms of action are separate from classical genomic interactions. </p><p>The aims of this thesis were to identify and characterize the molecular mechanisms underlying the effects of nanomolar concentrations of neurosteroids at the NMDA receptor. </p><p>The results show that the neurosteroids pregnenolone sulfate (PS) and pregnanolone sulfate 3α5βS) differently modulate the NMDA receptor, changing the kinetics for the NMDA receptor antagonist ifenprodil, through unique and separate targets at the NR2B subunit. The effects that appear to be temperature independent were further confirmed in a calcium imagining functional assay. A second functional study demonstrated that PS and 3α5βS affect glutamate-stimulated neurite outgrowth in NG108-15 cells. </p><p>Misuse of anabolic androgenic steroids (AAS) has powerful effects on emotional states. Since neurosteroids regulate processes involved in mood it can be hypothesised that AAS can interact with the action of neurosteroids in the brain. However, chronic administration of the AAS nandrolone decanoate did not alter the allosteric effects of PS or 3α5βS at the NMDA receptor, but changed the affinity for PS, 3α5βS and dehydroepiandrosterone sulfate to the sigma 1 receptor. The results also showed that the neurosteroids displace <sup>3</sup>H-ifenprodil from the sigma 1 and 2 receptors without directly sharing the binding site for <sup>3</sup>H-ifenprodil at the sigma 1 receptor. The decreased affinity for the neurosteroids at the sigma 1 receptor may be involved in the depressive symptoms associated with AAS misuse.</p><p>The NMDA receptor system is deeply involved in neurodegeneration and the NMDA receptor antagonist ifenprodil exert neuroprotective actions. The findings that neurosteroids interact with ifenprodil at the NMDA receptor may be an opportunity to obtain synergistic effects in neuroprotective treatment.</p>
26

Anabolic Androgenic Steroids and the Brain : Studies of Neurochemical and Behavioural Changes Using an Animal Model

Steensland, Pia January 2001 (has links)
A new group of anabolic androgenic steroid (AAS) users has developed during the last two decades. This group consists primarily of young men interested in improving their physical appearance. Within this group, AAS are sometimes used together with other illicit drugs, alcohol and nicotine. Brutal and violent crimes have been committed under the influence of AAS, possibly because of AAS psychiatric side effects, ranging from increased aggression and psychosis to depression. Unfortunately, the biochemical mechanisms behind these effects are poorly understood. In this thesis we used an animal model to study biochemical and behavioural effects of chronic AAS treatment (15 mg/kg/day of nandrolone decanoate for 14 days). The effect on the endogenous opioid peptides and the expression of immediate-early gene protein Fos in various brain regions were studied using radioimmunoassay and immunohistochemistry, respectively. In addition, we studied AAS effect on voluntary alcohol consumption and defensive behaviours, including aggression. The results show that AAS enhance endogenous opioid activity and Fos expression in brain regions regulating reward, aggression and disinhibitory behaviours. An imbalance between two opioid systems with generally opposing effects, the enkephalins with euphoric and the dynorphins with dysphoric effects, was also found. This implies that AAS alter the ability to maintain a stable state of mind and the response to other drugs of abuse. The AAS pre-treated animals enhanced their alcohol intake, were more aggressive and showed lower fleeing and freezing reaction than the controls. In addition, AAS enhanced amphetamine-induced aggression when the amphetamine was given three weeks after the last AAS injection. The behavioural and biochemical results found in this thesis, support the hypothesis that use of AAS might lead to the development of dependence and may induce changes in the brain leading to disinhibitory behaviours.
27

Neurosteroids Induce Allosteric Effects on the NMDA Receptor : Nanomolar Concentrations of Neurosteroids Exert Non-Genomic Effects on the NMDA Receptor Complex

Johansson, Tobias January 2008 (has links)
The neurosteroids constitute a group of powerful hormones synthesized and acting in the central nervous system. They participate in a number of important central processes, such as memory and learning, mood and neuroprotection. Their effects emerge from rapid interactions with membrane bound receptors, such as the N-methyl-D-aspartate (NMDA) receptor, the gamma-amino-butyric acid receptor and the sigma 1 receptor. The mechanisms of action are separate from classical genomic interactions. The aims of this thesis were to identify and characterize the molecular mechanisms underlying the effects of nanomolar concentrations of neurosteroids at the NMDA receptor. The results show that the neurosteroids pregnenolone sulfate (PS) and pregnanolone sulfate 3α5βS) differently modulate the NMDA receptor, changing the kinetics for the NMDA receptor antagonist ifenprodil, through unique and separate targets at the NR2B subunit. The effects that appear to be temperature independent were further confirmed in a calcium imagining functional assay. A second functional study demonstrated that PS and 3α5βS affect glutamate-stimulated neurite outgrowth in NG108-15 cells. Misuse of anabolic androgenic steroids (AAS) has powerful effects on emotional states. Since neurosteroids regulate processes involved in mood it can be hypothesised that AAS can interact with the action of neurosteroids in the brain. However, chronic administration of the AAS nandrolone decanoate did not alter the allosteric effects of PS or 3α5βS at the NMDA receptor, but changed the affinity for PS, 3α5βS and dehydroepiandrosterone sulfate to the sigma 1 receptor. The results also showed that the neurosteroids displace 3H-ifenprodil from the sigma 1 and 2 receptors without directly sharing the binding site for 3H-ifenprodil at the sigma 1 receptor. The decreased affinity for the neurosteroids at the sigma 1 receptor may be involved in the depressive symptoms associated with AAS misuse. The NMDA receptor system is deeply involved in neurodegeneration and the NMDA receptor antagonist ifenprodil exert neuroprotective actions. The findings that neurosteroids interact with ifenprodil at the NMDA receptor may be an opportunity to obtain synergistic effects in neuroprotective treatment.
28

Imaging brain aromatase by using PET : A way to study anabolic steroid abuse

Takahashi, Kayo January 2008 (has links)
Aromatase is an enzyme that facilitates the conversion of androgens to estrogens and may play a role in mood and mental status. The main theme of this thesis is the imaging of brain aromatase by use of the PET technique. The PET tracer for aromatase, 11C-labeled vorozole (VOZ) was developed and evaluated by with in vitro and in vivo methods. In vitro experiments using rat brain showed that VOZ was distributed in the medial amygdala, bed nucleus of the stria terminalis and medial preoptic area, regions of the brain known to be rich in aromatase and the KD value was determined to be 0.60 nM. The in vivo PET study in rhesus monkey brain revealed that VOZ penetrated the blood-brain barrier and accumulated in the amygdala and hypothalamus. Taken together, VOZ is a good PET tracer for in vivo aromatase imaging with high affinity and high sensitivity. This technique was applied to an investigation of brain aromatase under the physiological conditions simulating anabolic-androgenic steroid abuse. A significant increase in VOZ binding by anabolic-androgenic steroids was observed in the bed nucleus of stria terminalis and medial preoptic area in the rat brain. In contrast, no significant change in binding was observed in the medial amygdala. These results indicate that the manner of regulation of aromatase expression might be different in the bed nucleus of stria terminalis and medial preoptic area compared with that in the medial amygdala. The aromatase expression was suggested to be regulated through androgen receptors, as indicated in a study with flutamide treatment. The increased aromatase expression was seen in neurons. The PET study with anabolic steroid-treated rhesus monkeys also showed increased VOZ binding in the hypothalamus but not in the amygdala. The alteration of density of aromatase binding in the hypothalamic area could explain some psychological features of anabolic-androgenic steroid abusers. Novel PET tracers for aromatase were developed and examined. The two newly synthesized 18F-labeled vorozole analogs, [18F]FVOZ and [18F]FVOO, displayed different characteristics. Both tracers showed similar binding pattern as VOZ; however, [18F]FVOO was metabolized very quickly, meaning that this tracer is not suitable as a PET tracer. On the other hand, [18F]FVOZ can be an appropriate PET tracer. The role of aromatase in the human brain has not been clarified yet. To approach this problem by in vivo methods, we have just started PET studies to explore aromatase expression in humans.
29

Activational effects of exogenous steroid hormones on cognitive performance: A study of anabolic-androgenic steroids in men

Mish, Sandra J. 01 May 2008 (has links)
Objective: Despite widespread drug testing in sports and warnings about the potential risks of using anabolic-androgenic steroids (AAS), non-medical use is prevalent among athletes, non-athletes, and disturbingly among adolescents. To date, most research has focused on the anabolic properties and short-term health risks of AAS use. In contrast, studies investigating the effects on cognitive function in men using high doses of multiple exogenous steroids are lacking. The primary purpose of this naturalistic study was to examine the effects of non-medical steroid use on sex-related cognitive abilities in male bodybuilders. The secondary purpose of the study was to evaluate the psychological functioning of male bodybuilders who use AASs. Methods: Eight male bodybuilders who used high doses of AASs were matched with bodybuilding and aerobic controls who had never used AASs, according to age, education, and estimated verbal intelligence. AAS use of the bodybuilders appeared similar to reports in the literature of self-administered AASs regimens used by strength athletes. All groups underwent a battery of cognitive tests and self-report psychological inventories, and had serum total testosterone and binding proteins measured immediately after testing. Cognitive measures selected were those that have previously shown sex differences. The study examined four psychological domains: aggression, personality, body image, and eating-disordered attitudes/behaviours. Results: Male bodybuilders who used AASs scored significantly lower than controls on mental rotations and on the WAIS-III Digit-Symbol Coding subtest. There were no other significant group differences on the cognitive tasks. A curvilinear (inverted U) relationship was identified between spatial ability and total testosterone in men who did not use AASs. As there were only a few AAS users in the current study, there was little power to demonstrate a linear or nonlinear relationship. Overall, there were no significant differences between groups on the psychological variables. AAS users exhibited elevated levels of antisocial personality traits, with 38% scoring in the clinically significant range. Bodybuilders reported some body weight concerns, specifically a drive for muscularity combined with a drive for a well-toned body, with no difference between AAS users and bodybuilding controls. Three AAS users and one bodybuilding control exhibited psychological disturbances, as evidenced by elevated scores on multiple psychological measures. Conclusions: The results of this preliminary study provide some evidence that high doses of AASs in men might influence certain aspects of cognition, specifically reducing complex visuospatial skills and perceptual speed. The data also suggests that endogenous testosterone influences spatial ability in healthy men in a curvilinear fashion. Further research with larger samples of AAS users is required to quantify the cognitive effects of non-medical AAS regimens. The study also contributes to the growing literature on the psychological effects of bodybuilding and AAS use. Although many AAS users and bodybuilders might display minimal psychopathology, there is likely a subgroup of individuals who exhibit clinically significant psychological disturbances. Further research is necessary to identity the nature and severity of psychological symptomatology in this population, and effective modes of treatment.
30

Écotoxicité, cytotoxicité et potentiel androgène des résidus pharmaceutiques sur les deux modèles biologiques : Hydra attenuata et les cellules MDA-Kb2 / Ecotoxicity, cytotoxicity and androgenic potential pharmaceutical residues on two biological models : Hydra attenuata and MDA-KB2 cells

Benchouala, Amira 07 July 2016 (has links)
L’objectif de ce travail a consisté à évaluer différents effets écotoxiques, cytotoxique et le potentiel androgénique de 14 produits pharmaceutiques: la clomipramine, la fluoxétine, la fluvoxamine, la paroxétine, la sertraline et la venlafaxine (antidépresseurs), l’amphotéricine B, l’éconazole, le kétoconazole et le miconazole (antifongiques), la clarithromycine (antibiotique), l’acébutolol (ß-bloquants), le gabapentine (antiépileptiques) et la cétirizine (antihistaminiques), à l’aide d’études in vivo et in vitro. Les tests d’écotoxicité aiguë (96h) sur le cnidaire d’eau douce Hydra attenuata ont montré un effet délétère sur la survie des hydres adultes, la morphologie et le développement des embryons pour l’ensemble d’antidépresseurs et des antifongiques testés. Les valeurs de CE50 calculées ont révélé que l’éconazole, le miconazole et la sertraline sont les molécules les plus toxiques. Les tests d’écotoxicité chronique sur les hydres adultes (10 jours) et les embryons (14 jours) ont mis en évidence que la plus part des molécules d’antidépresseurs testées sont des embryotoxiques et tératogènes puisque ils induisent des malformations chez les embryons contrairement aux antifongiques qui présentent des anomalies seulement chez les adultes. Ces tests ont montré aussi que les molécules d’antidépresseurs testées seules sont moins toxiques que lorsqu’elles sont testées en mélange. En effet, le mélange de molécules antidépresseurs testées présente une toxicité plus élevée sur les adultes que sur les embryons, avec une concentration minimale induisant des effets significatifs de l’ordre de ng L-1, concentrations proches de celles retrouvées dans l’environnement. De plus, les résultats d’écotoxicité chronique sur plusieurs générations d’hydres ont montré que la morphologie des individus de la première génération (F0) ainsi que ceux de la deuxième génération (F1) été affectée de la même manière, démontrant une sensibilité du même ordre vis-à-vis de la sertraline ou du mélange d’antidépresseurs, tandis que les individus issus de la troisième génération (F2) apparaissent moins sensibles lors de l'exposition à la sertraline. Par contre, la reproduction des hydres exposées à la sertraline est diminué de plus en plus dans chaque génération, avec une toxicité plus importante pour les individus de la troisième génération. Le mélange d’antidépresseurs affecte la reproduction des hydres de la deuxième génération F1 à des concentrations environnementales. Les essais in vitro conduits sur les mêmes molécules pharmaceutiques, testées seules et en mélange, sur les cellules MDA-Kb2 n'ont révélé aucun effet androgénique et cytotoxique sur les cellules à des concentrations environnementales / The objective of this work was to evaluate different ecotoxic, cytotoxic and androgenic effects of 14 pharmaceutical compounds: clomipramine, fluoxetine, fluvoxamine, paroxetine, sertraline and venlafaxine, amphotericin B, éconazole, ketoconazole and miconazole, clarithromycin, the acebutolol, gabapentin and cetirizine, using in vivo and in vitro studies. The acute ecotoxicity tests (96h) on the freshwater cnidarian Hydra attenuata showed deleterious effects on adult survival, morphology and embryo development for all tested antidepressants and antifungals drug. The values of EC50 concentrations revealed that econazole, miconazole and sertraline are the most toxic molecules. The chronic ecotoxicity tests on hydras adults (10 days) and embryos (14 days) revealed that most of the molecules tested antidepressants are embryotoxic and teratogenic as they cause malformations in embryos contrary to antifungal which display abnormalities in adults only. These tests also showed that antidepressants tested individually are less toxic than when tested as a mixture. This mixture has a higher toxicity on adults than on embryos, with significant effects concentrations around ng L-1 which are close to measured environmental concentrations. In addition, chronic ecotoxicity results over several generations of hydras have shown identical sensitivity of both first and second generation on morphology of individuals. No more toxicity was observed on the third generation of hydra. Concerning the reproduction of hydras, this parameters was strongly decreased in all generations with an increasing sensitivity of individuals along the generations. Moreover, the mixture of antidepressants affect reproduction of hydras for the second generation at environmental concentrations. In vitro tests conducted on MDA-KB2 cells with the same pharmaceuticals revealed that these compounds tested did not exert any androgenic and cytotoxic effect on cells in culture at environmental concentrations

Page generated in 0.1172 seconds