• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 10
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 35
  • 27
  • 19
  • 16
  • 16
  • 14
  • 13
  • 13
  • 11
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chondroitin sulfate microparticles modulate TGF-B1-induced chondrogenesis in human mesenchymal stem cell spheroids

Goude, Melissa Chou 08 June 2015 (has links)
Due to the limited intrinsic healing ability of mature cartilage tissue, stem cell therapies offer the potential to restore cartilage lost due to trauma or arthritis. Mesenchymal stem cells (MSCs) are a promising cell source due to their ability to differentiate into various adult tissues under specific biochemical and physical cues. Current MSC chondrogenic differentiation strategies employ large pellets, however, we have previously developed a high-throughput technique to form small MSC aggregates (500-1,000 cells) that may reduce diffusion barriers while maintaining a multicellular structure that is analogous to cartilaginous condensations. The objective of this study was to examine the effects on chondrogenesis of incorporating chondroitin sulfate methacrylate (CSMA) microparticles (MPs) within these small MSC spheroids when cultured in the presence of transforming growth factor-β1 (TGF-β1) over 21 days. Spheroids +MP induced earlier increases in collagen II and aggrecan gene expression (chondrogenic markers) than spheroids -MP, although no large differences in immunostaining for these matrix molecules were observed by day 21. Collagen I and X was also detected in the ECM of all spheroids by immunostaining. Interestingly, histology revealed that CSMA MPs clustered together near the center of the MSC spheroids and induced circumferential alignment of cells and ECM around the material core. Because chondrogenesis was not hindered by the presence of CSMA MPs, this study demonstrates the utility of this culture system to further examine the effects of matrix molecules on MSC phenotype, as well as potentially direct differentiation in a more spatially controlled manner that better mimics the architecture of specific target tissues.
2

Nachweis und isoformspezifische Funktion von HMGB1-Protein im osteoarthritischen Knorpel und chondrogenen Progenitorzellen / Detection and isoform-specific function of high mobility group box protein 1 (HMGB1) in human osteoarthritic cartilage and chondrogenic progenitor cells.

Lehmann, Christoph 29 June 2020 (has links)
No description available.
3

Nachweis und isoformspezifische Funktion von HMGB1-Protein im osteoarthritischen Knorpel und chondrogenen Progenitorzellen / Detection and isoform-specific function of high mobility group box protein 1 (HMGB1) in human osteoarthritic cartilage and chondrogenic progenitor cells.

Lehmann, Christoph 29 June 2020 (has links)
No description available.
4

Nachweis und isoformspezifische Funktion von HMGB1-Protein im osteoarthritischen Knorpel und chondrogenen Progenitorzellen / Detection and isoform-specific function of high mobility group box protein 1 (HMGB1) in human osteoarthritic cartilage and chondrogenic progenitor cells.

Lehmann, Christoph 29 June 2020 (has links)
No description available.
5

Nachweis und isoformspezifische Funktion von HMGB1-Protein im osteoarthritischen Knorpel und chondrogenen Progenitorzellen / Detection and isoform-specific function of high mobility group box protein 1 (HMGB1) in human osteoarthritic cartilage and chondrogenic progenitor cells.

Lehmann, Christoph 29 June 2020 (has links)
No description available.
6

Untersuchungen an humanen chondrogenen Progenitorzellen aus späten Stadien der Osteoarthrose zu dem Migrationspotential und der Proliferationsfähigkeit ex vivo sowie zu den Auswirkungen einer Kultivierung in vitro auf das Genexpressionsmuster / The ability for migration and proliferation ex vivo of human chondrogenic progenitor cells from late stages of osteoarthritis and the effects of in vitro culture on gene-expression

Path, Jan Ragnar 18 May 2015 (has links)
Diese Arbeit untersucht die humanen chondrogenen Progenitorzellen (CPC) auf ihre Eignung für einen möglichen Therapieansatz der Osteoarthrose (OA). Hierbei zeigte sich, dass die CPC die Fähigkeit zur Migration sowohl in vitro als auch ex vivo besitzen. In vitro steigerte der Einsatz von TGF-ß3 die Migrationsrate, was von therapeutischem Nutzen sein könnte. Die CPC wanderten ex vivo ebenso in Knorpelgewebe aus makroskopisch unauffälligen Bereichen wie in an den Hauptdefekt angrenzendes Gewebe ein. Mit der Versuchsdauer nahm die Einwanderungstiefe zu, wobei dies im unauffällig erscheinenden Knorpel ausgeprägter war und hier auch größere Eindringtiefen gemessen wurden. Dies spricht für eine Zielzone, die die CPC anstreben und die im Knorpel neben dem Hauptdefekt früher erreicht wird. Bezüglich der Migrationsgeschwindigkeit weisen die CPC eine Heterogenität auf, verglichen mit anderen Zelltypen im menschlichen Organismus ist sie insgesamt allerdings gering. Über die gesamte Versuchsdauer ließen sich in beiden Gewebetypen proliferationsfähige CPC nachweisen. Eine Genexpressionsanalyse zeigte, dass die CPC dedifferenzierten Chondrozyten am ähnlichsten sind und eine kurzfristige Kultivierung sie kaum beeinflusst. Die Transfektion veränderte die Ausrichtung der CPC nicht, sondern führte vornehmlich zu einer vorübergehenden generellen Herabregulierung der Genexpression. Die Ergebnisse zeigen, dass ein therapeutischer Einsatz der CPC möglich wäre, da die Zellen auf einfache und komplikationsarme Weise gewonnen und kultiviert werden können. Zudem eröffnen die ausgeprägten migratorischen Fähigkeiten der CPC einfache Applikationswege, z. B. im Rahmen einer intraartikulären Injektion oder Arthroskopie. Ebenso viel versprechend ist die Erkenntnis, dass die Zellen innerhalb des Gewebes vital bleiben und so an einer Regeneration teilhaben könnten. Vor einer zukünftigen Anwendung der CPC bleiben allerdings noch einige Fragen zu beantworten. So ist die Rolle der CPC in der Pathogenese der OA noch nicht vollständig geklärt. Außerdem bleibt offen, wie lange die CPC im Gewebe vital bleiben und ob sie in der Lage sind, im Gewebe hyaline Knorpel-EZM herzustellen. Die Ergebnisse dieser Arbeit geben daher Anlass für weitere Forschung auf diesem Gebiet.
7

Effets de la Laminarine sur les cellules souches mésenchymateuses : impact sur la différentiation chondrogénique / Growth inhibition of mesenchymal stem cells by Laminarin : Impact on chondrocyte differenciation

Larguech, Gaithallah 29 June 2017 (has links)
Les cellules souches mésenchymateuses (CSM) de la moelle osseuse ont été intensivement étudiées pour leur capacité de régénération et leurs propriétés immunomodulatrices. Beaucoup d’études ont montré que la thérapie qui utilise les CSM améliore les fonctions de tissu ostéo-articulaire particulièrement le cartilage en vue de leur capacité de différenciation en chondrocytes. Les CSM présentent un certain nombre d'avantages pour la médecine régénérative, ces cellules peuvent être facilement isolées et multipliées en culture pour obtenir un nombre approprié pour la thérapie cellulaire. De plus, elles ont une faible immunogénicité, ce que les rende aptes à la transplantation allogénique. Depuis les années 1960, de nombreuses études ont souligné les propriétés médicinales des polysaccharides notamment les β-glucanes qui ont une place particulière du fait de leurs effets immunostimulants. L’objectif de notre travail était de mettre en évidence les capacités d’un β-glucane particulier, la laminarine, sur la prolifération et la différenciation des CSM dans la perspective d’applications dans l’arthrose. Les CSM ont été cultivés dans les milieux de croissance et de différenciation chondrocytaire. La viabilité et l'apoptose des cellules ont été explorées par le comptage, les tests MTT et la coloration à l'annexine V. En outre, l'analyse des protéines spécifiques de la prolifération a été effectuée par le western blott. De plus, l'expression des marqueurs spécifiques des CSM et des chondrocytes a été étudiée à l'aide de la RT-qPCR et de l’immunofluorescence. Nos résultats ont démontré que la stimulation des CSM à la laminarine avec la dose de 1 mg/ml soit en condition de culture de croissance basique ou en chondrogenèse a inhibé la prolifération des cellules sans induire leur apoptose. Encore, dans les conditions de culture chondrogénique, la laminarine à une dose similaire a empêché la différenciation des CSM en chondrocytes. / Mesenchymal stems cells (MSCs) are a population of multipotent cells residing in several readily available adult tissue compartments, thus allowing for their ex vivo expansion. MSCs have a reliable potential for differentiation (plasticity) into cells of the mesodermal lineage (chondrocytes, osteoblasts, adipocytes). Bone marrow-derived MSCs have been a focus of stem cell research in light of their relative ease of isolation and expansion and of their high potential for differentiation. Herein, the aim of the present PhD is to explore the potential of a β-glucan (laminarin) on Mesenchymal stem cell proliferation and differentiation for future benefit for osteoarthritis treatment. MSCs were cultured in MSC growth and chondrogenic differentiation mediums. Cells viability and apoptosis were explored by cell count, MTT assays and Annexin V staining. In addition, Analysis of the specific protein of cell proliferation was performed by western blott. Furthermore, mRNA and protein expression of specifics markers for MSCs and chondrocytes were studied using qPCR and immunofluorescence. Our results demonstrated that stimulation of MSC with laminarin at a dose of 1 mg/ml in either basic growth culture or chondrogenesis inhibited cell proliferation without inducing their apoptosis. Furthermore, under chondrogenic culture conditions, laminarin at a similar dose prevented the differentiation of MSC into chondrocytes.
8

Articular cartilage tissue engineering using chondrogenic progenitor cell homing and 3D bioprinting

Yu, Yin 01 May 2015 (has links)
Articular cartilage damage associated with joint trauma seldom heals and often leads to osteoarthritis (OA). Current treatment often fails to regenerated functional cartilage close to native tissue. We previously identified a migratory chondrogenic progenitor cell (CPC) population that responded chemotactically to cell death and rapidly repopulated the injured cartilage matrix, which suggested their potential for cartilage repair. To test that potential we filled experimental full thickness chondral defects with an acellular hydrogel containing SDF-1α. We expect that SDF-1α can increase the recruitment of CPCs, and then promote the formation of a functional cartilage matrix with chondrogenic factors. Full-thickness bovine chondral defects were filled with hydrogel comprised of fibrin and hyaluronic acid and containing SDF-1α. Cell migration was monitored, followed by chondrogenic induction. Regenerated tissue was evaluated by histology, immunohistochemistry, and scanning electron microscopy. Push-out tests were performed to assess the strength of integration between regenerated tissue and host cartilage. Significant numbers of progenitor cells were recruited by SDF-1α within 12 days. By 5 weeks chondrogenesis, repair tissue cell morphology, proteoglycan density and surface ultrastructure were similar to native cartilage. SDF-1α treated defects had significantly greater interfacial strength than untreated controls. However, regenerated neocartilage had relatively inferior mechanical properties compared with native cartilage. In addition to that, we developed a 3D bioprinting platform, which can directly print chondrocytes as well as CPCs to fabricated articular cartilage tissue in vitro. We successfully implanted the printed tissue into an osteochondral defect, and observed tissue repair after implantation. The regerated tissue has biochemical and mechanical properties within the physiological range of native articular cartilage. This study showed that, when CPC chemotaxis and chondrogenesis are stimulated sequentially, in situ full thickness cartilage regeneration and bonding of repair tissue to surrounding cartilage could occur without the need for cell transplantation from exogenous sources. This study also demonstrated the potential of using 3D bioprinting to engineer articular cartilage implants for repairing cartilage defect.
9

Enhanced phagocytic capacity endows chondrogenic progenitor cells with a novel scavenger function within injured cartilage

Zhou, Cheng 01 December 2016 (has links)
Articular cartilage underwent serious joint injuries seldom repair spontaneously and might progress to post-traumatic osteoarthritis. This is majorly because articular cartilage’s unique properties that lack blood and nerve supply intrinsically. This peculiar structure, in addition, generates an unfavorable environment for certain phagocytes (macrophages, monocytes, neutrophils, etc) to infiltrate to cartilage to scavenge debris from cartilage matrix and cell caused from joint injuries. Therefore, physiological and functional regeneration of damaged cartilage is urgently needed and several clinical techniques have been developed, including microfracture, autograft transplantation, autologous chondrocytes implantation. We previously identified highly migratory cells emerged and repopulated in cartilage damaged surface after ~10 days of artificial cartilage injury. These cells were later named chondrogenic progenitor cells (CPCs) due to their enhanced potential of chondrogenic differentiation. However, this important finding contrasts the conventional theory that cartilage harbors only one cell type, chondrocytes. Here we hypothesize that CPCs are a distinct cell type in cartilage, and more importantly, one of CPCs’ crucial natures is to phagocytose debris more effectively than chondrocytes. To test these, we first harvested CPCs from cartilage surfaces, chondrocytes, synovial cells (synoviocytes and synovial fluid cells) for microarray assay to evaluate the closeness among these joint cells on whole gene expression level. Quantitative PCR were then conducted to verify gene expression of certain functional interests. Moreover, debris from cell and extracellular matrix were generated and incubated with CPCs and chondrocytes to compare their phagocytic capacity via multiple experimental assessments. In confocal microscopy examination, the emergence of CPCs could be clearly observed after cartilage injury. Aside from their distinguishable morphology compared to chondrocyte, CPCs possess several vital properties including highly migratory, chemotactic, clonogenic. Microarray data revealed that CPCs, from gene expression profile, are distinctively isolated from chondrocytes and are more akin to synovial cells. Additionally, the series of phagocytosis related experiments showed that CPCs are dramatically superior to chondrocytes in engulfing debris, along with enhanced lysosomal activities indicating the following debris degradation. Taken all these data together, CPCs, activated by cartilage injury, emerged and migrated to damaged sites. They are a distinct cell type residing in cartilage apart from chondrocytes. Their enhanced capacity to sustainably phagocytose and clear debris provides a novel insight for cartilage regeneration and prevention of osteoarthritis.
10

The effects of cyclic hydrostatic pressure on chondrocytes in an alginate substrate

Journot, Brice James 01 May 2012 (has links)
No description available.

Page generated in 0.0498 seconds