• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 14
  • 14
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 78
  • 18
  • 17
  • 17
  • 15
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Growth of anodic alumina nanopores and titania nanotubes and their applications

Chen, Bo 07 January 2013 (has links)
Anodic aluminum oxide (AAO) nanopores are excellent templates to fabricate different nanostructures. However, the pores are limited to a hexagonal arrangement with a domain size of a few micrometers.  In this dissertation, focused ion beam (FIB) is used to create pre-patterned concaves to guide the anodization. Due to the advantage of FIB lithography, highly ordered AAO arrays with different arrangements, alternating diameters, and periodic pore densities are successfully achieved. Anodization window to fabricate ordered AAO is enlarged due to the FIB pre-pattern guidance. AAO has also been successfully used as a template to nanoimprint prepolymer to synthesize vertically aligned and high aspect ratio h-PDMS nanorod arrays with Moiré pattern arrangements. The formation mechanism of anodic TiO2 nanotubes is proposed in this dissertation. Moreover, FIB pre-pattern guided anodization is introduced to synthesize highly ordered TiO₂ nanotubes with different morphologies. The effects of inter-tube distance and arrangement to the structure of TiO₂ nanotubes are investigated. TiO2 nanotubes with branched and bamboo-type structures are achieved by adjusting anodization voltage. The influence of patterned concave depth and surface curvature on the growth of TiO₂ nanotubes and AAO are studied. The efficiency of TiO₂ nanotubes in supercapacitors and photoelectrochemical water splitting are optimized by enlarging surface area and increasing electrical conductivity. Focused ion beam can not only create concave arrays to guide the electrochemical anodization, but also be used for nanoscale sculpting and 3D analysis. When the TiO₂ nanotube surface is bombarded by FIB, there is a mass transfers due to ion-induced viscous flow and sputter milling, thus the TiO₂ nanotubes are selectively closed and opened. By combining FIB cutting and SEM imaging to create a series of 2D cross section SEM images, 3D reconstruction can be obtained by stacking SEM images together. This 3D reconstruction offers an opportunity to directly and quantitatively observe the pore evolution to understand the sintering process. / Ph. D.
12

Nanopore/Nanotube Pattern Formation through Focused Ion Beam Guided Anodization

Tian, Zhipeng 15 January 2011 (has links)
Anodization is a kind of method that can produce oxide layer in a large area and on flexible shaped metals. In some specific conditions, anodic oxide layers exhibit interesting nanopore/nanotube structures. In this work, focused ion beam patterning method is introduced to general anodization, aiming to make highly ordered anodic porous alumina and titania nanotubes. Focused ion beam guided porous anodic alumina is carried out by pre-designing hexagonal and square guiding patterns with different interpore distances on well electropolished Al foil before anodization. After anodization, the guiding interpore distance is found to affect the new pores' locations and shapes. Two important elements, electrical field and mechanical stress, are discussed for the development of the guiding pores and the generation of new pores. Based on the proposed pore growth mechanism, novel patterns, non-spherical pores, and large patterns across the grain boundaries are successfully produced. The research on focused ion beam guided anodic titania nanotubes begins with surface polishing. The influence of four polishing conditions, as-received, chemically polished, mechanically polished, and electropolished samples, are investigated. A polished smooth sample provides a desired surface for focused ion beam guided anodization. Hexagonal guiding patterns with different interpore distances are created on Ti surface. Ordered nanotube arrays are produced, and the structure of the anodized guiding pattern is identified. / Master of Science
13

Síntese de membranas de alumina anódica porosa sobre substratos metálicos obtidos por evaporação térmica / Synthesis of porous anodic alumina membranes on metal substrates obtained by thermal evaporation

Garcia, Uanderson Mezavila 14 March 2017 (has links)
Submitted by Milena Rubi (milenarubi@ufscar.br) on 2017-08-16T17:29:07Z No. of bitstreams: 1 GARCIA_Uanderson_2017.pdf: 25453924 bytes, checksum: 4c34f46362e91f9eb2f88106f805d7f3 (MD5) / Approved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2017-08-16T17:29:17Z (GMT) No. of bitstreams: 1 GARCIA_Uanderson_2017.pdf: 25453924 bytes, checksum: 4c34f46362e91f9eb2f88106f805d7f3 (MD5) / Approved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2017-08-16T17:29:23Z (GMT) No. of bitstreams: 1 GARCIA_Uanderson_2017.pdf: 25453924 bytes, checksum: 4c34f46362e91f9eb2f88106f805d7f3 (MD5) / Made available in DSpace on 2017-08-16T17:29:30Z (GMT). No. of bitstreams: 1 GARCIA_Uanderson_2017.pdf: 25453924 bytes, checksum: 4c34f46362e91f9eb2f88106f805d7f3 (MD5) Previous issue date: 2017-03-14 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / This work covers the investigation and synthesis of nanometric structures of Porous Anodic Alumina PAA, produced from low purity substrates, in aim to obtain selfsustained membranes. The Hard Anodization (HA) and Mild Anodization (MA) processes were used under special conditions through those found in literature. The analyses of results were based in comparing the AAP produced under the same conditions except the applied potential that was different depending on the MA or HA. HA process had its time halved in order to investigate the oxide growth rate and to calibrate the conditions of anodized membrane synthesis over the glass samples. This work also covers the construction of a resistive thermal evaporation PVD system capable of evaporating metals with melting points below 800°C. Through the deposition of successive layers it was possible to obtain metallic films of aluminum with thicknesses above 10 µm, enabling conditions of synthesis of porous anodic alumina on substrates produced by thermal resistive evaporation. The result of membrane synthesis on low purity aluminum substrates was complement to the synthesis of membranes obtained in aluminum evaporated in glass substrates, since the thickness of each deposited film is low if compared to the thickness of the AAP layer. Therefore, it was necessary to make several Al depositions on the same samples, to obtain an aluminum film that was able to support an oxide layer of anodic alumina and with the same characteristics of those obtained by the process of MA. All anodized samples were characterized by scanning electron microscopy, including samples made from metalized aluminum. The micrography obtained from the low purity aluminum membranes were treated by ImageJ software allowing the morphological analysis. AAP membranes obtained from technical Al substrate depicted the formation of branched pore channels, a result of instabilities in applied electric field during Anodization and presence of different alloying elements in the Al substrate. The metalized aluminum film had a larger thickness in the samples positioned in the middle of the sample holder possibly due to different temperature gradients of filament depending on the position of Al pellets. / Este trabalho aborda a síntese e investigação de estruturas nanométricas de Alumina Anódica Porosa AAP produzidas a partir de substratos de baixa pureza, com a finalidade da obtenção de membranas auto-suportadas. Foram utilizados os processos de Hard Anodization (HA) e Mild Anodization (MA). Para efeito comparativo entre os processos foram mantidas todas as condições variando apenas o potencial aplicado. Posteriormente para HA o tempo experimental foi reduzido pela metade a fim de investigar a velocidade no crescimento do óxido e condições de anodização de membranas sobre as amostras de vidro. Este trabalho também abrange a construção de um sistema Phisical Vapor Deposition (PVD) por evaporação térmica resistiva, capaz de evaporar metais com pontos de fusão abaixo de 800°C. Através da deposição de sucessivas camadas foi possível a obtenção de filmes metálicos de Alumínio com espessuras acima de 10 µm, possibilitando condições de síntese de alumina anódica porosa sobre substratos produzidos por evaporação térmica resistiva. O resultado da síntese de membranas em substratos de Al de baixa pureza foi complementar à síntese das membranas obtidas em alumínio evaporado em substratos de vidro, pois a espessura de cada filme depositado é baixa se comparados a espessura da camada de AAP. Portanto, houve a necessidade de várias deposições sobre as mesmas amostras, para se obter o filme de alumínio que fosse capaz de suportar uma camada de alumina anódica porosa resistente e que se aproximasse das características das obtidas pelo processo de MA. Todas as amostras anodizadas foram caracterizadas por microscopia eletrônica de varredura, inclusive as amostras produzidas a partir do alumínio metalizado. As micrografias obtidas a partir das membranas de alumínio de baixa pureza foram tratadas pelo software ImageJ, possibilitando a análise morfológica das mesmas. As membranas de AAP de baixa pureza possuem poros com ramificações transversais, são provocadas pelos desvios do campo elétrico aplicado, além da possibilidade de formação de outros tipos de óxidos. O filme de alumínio metalizado teve maior espessura nas amostras posicionadas na parte central do porta amostra, isso pode estar relacionado com o aquecimento do filamento que ocorre da região central para as extremidades. / 2010/10813-0
14

Anodized Zirconia Nanostructures

Choudhury, Tanushree H January 2013 (has links) (PDF)
Electrochemical anodization is a facile technique to synthesize ordered oxide nanostructures. Though the number of materials exhibiting anodized nanostructures has increased considerably in the recent years, only nanoporous alumina and nanotubular titania have been investigated extensively for various applications. Anodized nanostructures, nanotubes and nanopores, of zirconia are also of considerable interest for applications such as templates, sensors and solid-oxide fuel cells. In spite of the potential applications of zirconia, these nanostructures have been barely studied. As most of these applications require elevated temperatures in excess of 400C, thermal stability becomes an important attribute. Even though zirconia (Tm=2715C) has as higher melting point than alumina(Tm = 2072C), literature reports and initial research showed that the thermal stability of anodized zirconia was limited to 500C-1 h compared to 1000C-4 h for alumina. The work carried out as a part of this research showed that halide ions used in the synthesis are the possible cause for the lower thermal stability. Chemical treatment of the zirconia membranes to neutralize the halide ions helped enhance the stability to 1000C-1 h, thus, improving their usability for most of the applications mentioned above. Most of the current reported work on aluminum, zirconium, and titanium is predominantly limited to anodization of foils which can only yield free-standing nanostructures. As synthesis of these nanostructures on a substrate would further facilitate their usage, supported anodized zirconia nanostructures were synthesized by anodizing sputtered zirconium films. This study showed that the anodized morphology depends strongly on the sputtered film microstructure, which changes in accordance with the Thornton’s zone diagrams. A general approach thus developed is expected to be applicable to anodization of all metallic films. Most applications involving zirconia also require stabilization against a tetragonal-monoclinic phase transformation by suitable alloying such as with yttria. Towards this end, routes to develop anodized yttria-stabilized zirconia nanostructures, which are nonexistent, were explored. The synthesis of yttria stabilized zirconia nanostructures with no detectable monoclinic phase was achieved. Yttrium alloying using a solution treatment was found to enhance stability of the supported nanostructures to 900C-16 h, which makes it possible to now evaluate these nanostructures, especially for micro-SOFC applications.
15

Porous anodic metal oxides

Su, Zixue January 2010 (has links)
An equifield strength model has been established to elucidate the formation mechanism for the highly ordered alumina pore arrays and titanium oxide nanotubular arrays prepared via a common electrochemical methodology, anodisation. The fundamentals of the equifield strength model was the equilibrium between the electric field driven oxidation rate of the metal and electric field enhanced dissolution rate of oxide. During the anodic oxidation of metal, pore initiation was believed to generate based on dissolution rate difference caused by inhomogeneity near the metal/oxide interface. The ionic nanoconvection driven by the electric force exerted on the space charge layer in the vicinity of electrolyte/oxide interface is established to be the main driving force of the pore ordering at the early stage of the anodisation. While the equifield strength requirement governs the following formation of the single pore and the self-ordering of random distributed pore arrays during the anodisation process. Hexagonal patterned Al2O3 nanopore arrays and TiO2 nanotubular arrays have been achieved by anodisation of corresponding metal substrates in proper electrolytes. The two characteristic microstructural features of anodic aluminium oxide (AAO) and anodic titanium oxide (ATO) were investigated using scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The observations of the hemispherical electrolyte/oxide and oxide/metal interfaces, uniform thickness of the oxide layer, as well as self-adjustment of the pore size and pore ordering can be well explained by the equifield strength model. Field enhanced dissociation of water is extremely important in determination of the porosity of anodic metal oxide. The porosity of AAO and ATO films was found to be governed by the relative dissociation rate of water which is dependent on anodisation conditions, such as electrolyte, applied voltage, current density and electric field strength. Using an empirical method, the relations between the porosity of the AAO (ATO) films and the anodisation parameters, such as electric field strength, current density and applied voltage, have been established. Besides, the extent that an external electric field can facilitate the heterolytic dissociation of water molecule has been estimated using quantum-chemical model computations combined with the experimental aspect. With these achievements, the fabrication of anodic metal oxide films can be understood and controlled more precisely. Additionally, the impacts of other factors such as the electrolyte type and the temperature effect on the morphology of the anodic products were also investigated. Some important experimental evidences on the pore diameters variation with applied voltage in the anodisation of aluminium and the titanium were obtained for future investigation of the anodic metal oxide formation processes.
16

Advanced materials based on titania nanotubes for the fabrication of high performance 3D li-ion microbatteries. / Matériaux Avancés à Base des nanotubes de TiO2 pour la Fabrication de Microbatteries 3D Li-ion

Kyeremateng, Nana Amponsah 23 November 2012 (has links)
Le développement des dispositifs microélectroniques a dopé la recherche dans le domaine des microbatteries tout solide rechargeables. Mais actuellement, les performances de ces microbatteries élaborées par des technologies couche mince (2D) sont limitées et le passage à une géométrie 3D adoptant le concept “Li-ion” ou“rocking chair” est incontournable. Cette dernière condition implique de combiner des matériaux de cathode comme LiCoO2, LiMn2O4 or LiFePO4 avec des anodes pouvant réagir de manière réversible avec les ions lithium. Parmi tous les matériaux pouvant servir potentiellement d'anode, les nanotubes de TiO2 révèlent des propriétés intéressantes pour concevoir des microbatteries Li-ion 3D. Facilement réalisable, la nano-architecture auto-organisée a montré des résultats très prometteurs en termes de capacités à des cinétiques relativement modérées. L'utilisation des nanotubes de TiO2 en tant qu'anode conduit à des cellules présentant de faible autodéchargeet élimine le risque de surcharge grâce au haut potentiel de fonctionnement (1.72 V vs. Li+/Li). Dans ce travail de thèse, nous avons étudié la substitution des ions Ti4+ par Sn4+ et Fe2+ dans les nanotubes de TiO2. Bien que la présence d'ions Fe2+ n'ait pas amélioré les performances électrochimiques des nanotubes, nous avons pu mettre en évidence l'effet bénéfique des ions Sn4+. Nous avons aussi pu montré que la fabrication de matériaux composites à base de nanotubes de TiO2 et d'oxyde de métaux de transition électrodéposés se présentant sous forme de particules (NiO et Co3O4 ) augmentait les capacités d'un facteur 4. / The advent of modern microelectronic devices has necessitated the search for high-performance all-solid-state (rechargeable) microbatteries. So far, only lithium-based systems fulfill the voltage and energy density requirements of microbatteries. Presently, there is a need to move from 2D to 3D configurations, and also a necessity to adopt the “Li-ion” or the “rocking-chair” concept in designing these lithium-based (thin-film) microbatteries. This implies the combination of cathode materials such as LiCoO2, LiMn2O4 or LiFePO4 with the wide range of possible anode materials that can react reversibly with lithium. Among all the potential anode materials, TiO2 nanotubes possess a spectacular characteristic for designing 3D Li-ion microbatteries. Besides the self-organized nano-architecture, TiO2 is non-toxic and inexpensive, and the nanotubes have been demonstrated to exhibit very good capacity retention particularly at moderate kinetic rates. The use of TiO2 as anode provides cells with low self-discharge and eliminates the risk of overcharging due to its higher operating voltage (ca. 1.72 V vs. Li+/Li). Moreover, their overall performance can be improved. Hence, TiO2 nanotubes and their derivatives were synthesized and characterized, and their electrochemical behaviour versus lithium was evaluated in lithium test cells. As a first step towards the fabrication of a 3D microbattery based on TiO2 nanotubes, electrodeposition of polymer electrolytes into the synthesized TiO2 nanotubes was also studied; the inter-phase morphology and the electrochemical behaviour of the resulting material were studied.
17

Synthesis and Characterization of Nanostructures in Porous Anodic Aluminum Oxide Templates

Lim, Jin-Hee 04 August 2011 (has links)
In this study, template-based methods are used for the fabrication of various nanostructures such as nandots, nanorods, nanowires, nanotubes, and core-shell structures. Porous alumina membranes were employed as templates and metal nanostructures were synthesized in the templates by electrodeposition. By using lithography techniques, controlled patterned nanostructures were also fabricated on alumina templates. The magnetic properties of the various metal nanostructures were investigated. The pore size, interpore distance, and pore geometry highly affect magnetic properties of nanostructures grown in the templates. Hexagonally ordered porous alumina templates can be fabricated by two-step anodization. The pore diameters and interpore distances were readily controlled by appropriately changing anodization conditions and pore widening time. Alumina templates with various pore geometries were also successfully synthesized by changing applied voltage, increasing and decreasing, during a third anodization step. To understand magnetic properties of nanostructures with different aspect rations in the form of nanodots, nanorods, or nanowires, Fe nanostructures were fabricated in the templates by controlling of electrodeposition times. The coercivity of nanostructures increased with increasing aspect ratio. The anisotropy of the arrays was governed by the shape anisotropy of the magnetic objects with different aspect ratios. nanowires in mild-hard alumina and conventional alumina templates showed distinct differences in the squareness of hysteresis loops and coercivity both as a function of pore structure and magnetic component. Iron oxide nanotubes with a unique inner-surface were also fabricated by an electrodeposition method. β-FeOOH nanotubes were grown in alumina templates and transformed into hematite and magnetite structures during various heating processes. Hematite nanotubes are composed of small nanoparticles less than 20 nm diameters and the hysteresis loops and FC-ZFC curves show superparamagnetic properties without the Morin transition. In the case of magnetite nanotubes, which consist of slightly larger nanoparticles, hysteresis loops show ferromagnetism with weak coercivity at room temperature while FC-ZFC curves exhibit the Verwey transition at 125 K. For the patterning of nanowires, lithography techniques including nanosphere lithography and e-beam lithography were used. Nanosphere lithography used self-assembled PS spheres as a mask creates holes between spheres and the size of the holes is determined by the size and geometry of ordered PS spheres on the templates. This method can grow patterned nanowires arrays and also produce unique cup-shaped nanostructures with sizes ranging from micrometer down to several nanometers. E-beam lithography was also combined with template-based electrodeposition. Of these two lithographic methods, this one is the most powerful in the fabrication of patterned nanostructures with high aspect ratios. Various features and the sizes of patterned structures can be readily controlled. By the directing the pore diameters and interpore distances of the alumina template, the size and number of patterned nanowires are also adjustable.
18

NANOCOLORAÇÃO DE LIGAS DE ALUMÍNIO / NANOCOLORING OF ALUMINUM ALLOYS

Alves, Guilherme José Turcatel 05 March 2012 (has links)
Made available in DSpace on 2017-07-24T19:38:06Z (GMT). No. of bitstreams: 1 Guilherme Alves.pdf: 2875856 bytes, checksum: 413e2c96bb5544d5d44d06e0b591a116 (MD5) Previous issue date: 2012-03-05 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The use of aluminum becomes increasing because of the lightness of this metal and its high corrosion resistance. The anodization of the aluminum is now a well known and is widely used to increase the durability of the metal. This electrochemical technique forces the growth of oxide layer. The anodized layer has the peculiarity of having the nanotubes which allows the insertion of pigments and other compounds within these. The anodizing process, industrially used followed by coloration, according to the literature has been applied a current of 50 mA/cm2, dye concentration approximately 2-5 g / L, 15-18% sulfuric acid and temperature 40C. For these different factors, there is no a rigid control, therefore, there must be an optimization study of the process because the use of many reagents on an industrial scale can lead to an undesirable environmental impact, beyond the gas emission due to concentration of the acid used, even high energy expenditure. In this study it was used an organic dye to be deposited in the aluminum alloy AA6351 electrochemically anodized and studied, using a factorial design in the process to minimize the costs and to improve the metal protection. The experimental techniques used in this study were: chemometrics, anodizing, coloring by immersion, open circuit potential, anodic potentiostatic polarization, charge transfer resistance, electrochemical impedance spectroscopy, optical microscopy, scanning electron microscopy, microanalysis and Raman spectroscopy. The parameters for the experimental design, using chemometrics, were taken from the literature, as follows: current density, time and electrolyte concentration for the anodization, and dye concentration for the coloring. Measurements of charge transfer resistance (RCT) have demonstrated which tests would offer the greater protection. Two of the experimental tests, showed an RCT around by 2.85 x 108.cm2. These tests showed two situations: (1st) when anodization current density is high, less anodization time and dye are needed; (2nd) when anodization current density is low, much time and dye are needed. The polarization curves showed a current density of the samples anodized and colored are very small when compared with aluminum only polished. The electrochemical impedance spectroscopy also showed greater resistance of the layer developed on the colored pieces. The scanning electron microscopy showed that the diameter of the nanopores of the aluminum anodized, in first case, are around by 11.7 nm, so, therefore, less dye is needed to fill the nanoporos layer. In second case, the nanopores diameters are smaller than the first case; it is around by 7.6 nm, requiring higher dye concentration. In optical microscopy it was observed that the parameter also influence the tone of the chosen color. The energy dispersive system and the microanalysis showed have no heavy metals on the surface of aluminum neither in the dye composition. Raman spectroscopy proved that compound is on surface and did not change in the coloring process. / A utilização do alumínio torna-se cada vez maior, devido à leveza do metal e sua elevada resistência a corrosão. A anodização do alumínio é uma técnica bem conhecida e está sendo muito utilizada para o aumento da durabilidade do metal. Esta técnica força eletroquimicamente o crescimento da camada de óxido. A camada anodizada tem a peculiaridade de possuir nanotubos o que permite a inserção de pigmentos e outros compostos no interior destes. O processo de anodização, utilizado industrialmente seguido da coloração, de acordo com a literatura, tem sido aplicado uma corrente de 50 mA/cm2, concentração de corante da ordem de 2-5 g/L, 15-18% de ácido sulfúrico e temperatura de 40C. Nota-se que não há um controle industrial desses diversos fatores que existem no processo, com isso, é preciso que haja um estudo de otimização do processo, pois a utilização de muitos reagentes em escala industrial pode levar a um impacto ambiental indesejável, além da emissão de gases devido a concentração do ácido utilizada e até gasto elevado de energia. Neste trabalho foi utilizado um corante orgânico para ser depositado na liga de alumínio AA6351 anodizada e estudado eletroquimicamente utilizando-se o planejamento fatorial para minimizar custos do processo, e melhorar a proteção do metal. As técnicas experimentais utilizadas neste trabalho foram: quimiometria, anodização, coloração por imersão, potencial de circuito aberto, polarização potenciostática anódica, resistência de transferência de carga, espectroscopia de impedância eletroquímica, microscopia óptica, microscopia eletrônica de varredura, microanálise e espectroscopia Raman. Os parâmetros para o planejamento experimental, utilizando-se da quimiometria, foram retirados da literatura, sendo eles: densidade de corrente, tempo e concentração do eletrólito para a anodização; e concentração do corante para a coloração. As medidas de resistência de transferência de carga (RTC) demonstraram a possibilidade de identificar quais dos ensaios ofereceriam maior proteção. Dois dos ensaios do planejamento experimental mostraram uma RTC por volta de 2,85 x 108 .cm2. Estes ensaios mostraram duas situações: (1º) quando a densidade de corrente de anodização é alta, menos tempo de anodização e corante são necessários; (2) quando a densidade de corrente de anodização é baixa, mais tempo de anodização e corante são necessários. As curvas de polarização mostraram uma densidade de corrente, das amostras anodizadas e coloridas, com valores muito menores quando comparado com o alumínio somente polido. A espectroscopia de impedância eletroquímica também mostrou uma resistência maior da camada desenvolvida nas peças coloridas. A microscopia eletrônica de varredura mostrou que o diâmetro dos nanoporos do óxido de alumínio do ensaio na primeira situação são maiores, da ordem de 11,7 nm, e por isso é necessário menos corante para preencher a camada de nanoporos, enquanto na segunda os nanoporos eram menores, da ordem de 7,6 nm exigindo maior concentração do corante. Na microscopia óptica foi possível observar que os parâmetros também influenciam na tonalidade da coloração escolhida. Os ensaios de sistema de energia dispersiva e de microanálise não apresentaram metais pesados na superfície do alumínio nem na composição do corante. A espectroscopia Raman comprovou que o composto está na superfície e que não sofreu alteração no processo de coloração.
19

The Design Of A Nanolithographic Process

Johannes, Matthew Steven 02 July 2007 (has links)
This research delineates the design of a nanolithographic process for nanometer scale surface patterning. The process involves the combination of serial atomic force microscope (AFM) based nanolithography with the parallel patterning capabilities of soft lithography. The union of these two techniques provides for a unique approach to nanoscale patterning that establishes a research knowledge base and tools for future research and prototyping.To successfully design this process a number of separate research investigations were undertaken. A custom 3-axis AFM with feedback control on three positioning axes of nanometer precision was designed in order to execute nanolithographic research. This AFM system integrates a computer aided design/computer aided manufacturing (CAD/CAM) environment to allow for the direct synthesis of nanostructures and patterns using a virtual design interface. This AFM instrument was leveraged primarily to study anodization nanolithography (ANL), a nanoscale patterning technique used to generate local surface oxide layers on metals and semiconductors. Defining research focused on the automated generation of complex oxide nanoscale patterns as directed by CAD/CAM design as well as the implementation of tip-sample current feedback control during ANL to increase oxide uniformity. Concurrently, research was conducted concerning soft lithography, primarily in microcontact printing (µCP), and pertinent experimental and analytic techniques and procedures were investigated.Due to the masking abilities of the resulting oxide patterns from ANL, the results of AFM based patterning experiments are coupled with micromachining techniques to create higher aspect ratio structures at the nanoscale. These relief structures are used as master pattern molds for polymeric stamp formation to reproduce the original in a parallel fashion using µCP stamp formation and patterning. This new method of master fabrication provides for a useful alternative to conventional techniques for soft lithographic stamp formation and patterning. / Dissertation
20

Transformation mechanisms to TiO and anatase from Ti thin film by anodizing and thermal annealing treatments

Chung, Yu-Lin 25 February 2012 (has links)
The phase transformation of anodized Ti film has been studied. Although X-ray diffraction detected only the amorphous TiO2 phase, transmission electron microscopy analysis showed that TiO nanocrystallites less than 10 nm in size were also present, which was further supported by x-ray photoelectron spectroscopy analysis. Anatase was found to appear gradually by annealing the as-anodized specimen in air at 500¡V550 oC, which was accompanied by a simultaneous disappearance of TiO nanocrystallites. In contrast, only rutile is formed by annealing the Ti film at the same temperatures. The results indicate that TiO can induce the formation of anatase, which is explained by the close similarity between their structures. (Chapter 1) Anatase phase of TiO2 has been shown to have very good biocompability. It was frequently observed on Ti surfaces after anodizing and thermal annealing treatments. In this report the mechanisms of the Ti to TiO and the TiO to anatase phase transitions in anodizing and annealing treatments of Ti have been studied by transmission electron microscopy. Ti thin films of two strong textures were first grown on the (001)NaCl substrates. In addition to amorphous TiO2, the anodization treatment caused the formation of TiO with an orientation relationship of (11-20)Ti // (220)TiO with Ti. The subsequent thermal annealing treatment caused the TiO to anatase transition with an orientation relationship of {200}TiO //{200}A. Pure anatase film was prepared by this method. (Chapter 2)

Page generated in 0.0854 seconds