Spelling suggestions: "subject:"anti damper"" "subject:"anti tampering""
1 |
Anti-Counterfeit and Anti-Tamper Hardware Implementation using Hardware ObfuscationDesai, Avinash R. 06 September 2013 (has links)
Tampering and Reverse Engineering of a chip to extract the hardware Intellectual Property (IP) core or to inject malicious alterations is a major concern. First, offshore chip manufacturing allows the design secrets of the IP cores to be transparent to the foundry and other entities along the production chain. Second, small malicious modifications to the design may not be detectable after fabrication without anti-tamper mechanisms. Counterfeit Integrated Circuits (ICs) also have become an important security issue in recent years, in which counterfeit ICs that perform incorrectly or sub-par to the expected can lead to catastrophic consequences in safety and/or mission-critical applications, in addition to the tremendous economic toll they incur to the semiconductor industry. Some techniques have been developed in the past to improve the defense against such attacks but they tend to fall prey to the increasing power of the attacker. We present a new way to protect against tampering by a clever obfuscation of the design, which can be unlocked with a specific, dynamic path traversal. Hence, the functional mode of the controller is hidden with the help of obfuscated states, and the functional mode is made operational only on the formation of a specific interlocked Code-Word during state transition. A novel time-stamp is proposed that can provide the date at which the IC was manufactured for counterfeit detection. Furthermore, we propose a second layer of tamper resistance to the time-stamp circuit to make it even more difficult to modify. Results show that methods proposed offer higher levels of security with small area overhead. A side benefit is that any small alteration will be magnified via the obfuscated design proposed in these methods. / Master of Science
|
2 |
Uniquely Identifiable Tamper-Evident Device Using Coupling between Subwavelength GratingsFievre, Ange Marie P 27 March 2015 (has links)
Reliability and sensitive information protection are critical aspects of integrated circuits. A novel technique using near-field evanescent wave coupling from two subwavelength gratings (SWGs), with the input laser source delivered through an optical fiber is presented for tamper evidence of electronic components. The first grating of the pair of coupled subwavelength gratings (CSWGs) was milled directly on the output facet of the silica fiber using focused ion beam (FIB) etching. The second grating was patterned using e-beam lithography and etched into a glass substrate using reactive ion etching (RIE). The slightest intrusion attempt would separate the CSWGs and eliminate near-field coupling between the gratings. Tampering, therefore, would become evident.
Computer simulations guided the design for optimal operation of the security solution. The physical dimensions of the SWGs, i.e. period and thickness, were optimized, for a 650 nm illuminating wavelength. The optimal dimensions resulted in a 560 nm grating period for the first grating etched in the silica optical fiber and 420 nm for the second grating etched in borosilicate glass. The incident light beam had a half-width at half-maximum (HWHM) of at least 7 µm to allow discernible higher transmission orders, and a HWHM of 28 µm for minimum noise. The minimum number of individual grating lines present on the optical fiber facet was identified as 15 lines. Grating rotation due to the cylindrical geometry of the fiber resulted in a rotation of the far-field pattern, corresponding to the rotation angle of moiré fringes. With the goal of later adding authentication to tamper evidence, the concept of CSWGs signature was also modeled by introducing random and planned variations in the glass grating.
The fiber was placed on a stage supported by a nanomanipulator, which permitted three-dimensional displacement while maintaining the fiber tip normal to the surface of the glass substrate. A 650 nm diode laser was fixed to a translation mount that transmitted the light source through the optical fiber, and the output intensity was measured using a silicon photodiode. The evanescent wave coupling output results for the CSWGs were measured and compared to the simulation results.
|
Page generated in 0.0611 seconds