• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 11
  • 8
  • 7
  • 6
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 165
  • 165
  • 41
  • 31
  • 27
  • 22
  • 19
  • 15
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Cytotoxic hydrogen bridged ruthenium quinaldamide complexes showing induced cancer cell death by apoptosis

Lord, Rianne M., Allison, Simon J., Rafferty, K., Ghandhi, L., Pask, C.M., McGowan, P.C. 01 July 2016 (has links)
Yes / This report presents the first known p-cymene ruthenium quinaldamide complexes which are stabilised by a hydrogen-bridging atom, [{(p-cym)RuIIX(N,N)}{H+}{(N,N)XRuII(p-cym)}][PF6] (N,N = functionalised quinaldamide and X = Cl or Br). These complexes are formed by a reaction of [p-cymRu(μ-X)2]2 with a functionalised quinaldamide ligand. When filtered over NH4PF6, and under aerobic conditions the equilibrium of NH4PF6 ⇔ NH3 + HPF6 enables incorporation of HPF6 and the stabilisation of two monomeric ruthenium complexes by a bridging H+, which are counter-balanced by a PF6 counterion. X-ray crystallographic analysis is presented for six new structures with O⋯O distances of 2.420(4)–2.448(15) Å, which is significant for strong hydrogen bonds. Chemosensitivity studies against HCT116, A2780 and cisplatinresistant A2780cis human cancer cells showed the ruthenium complexes with a bromide ancillary ligand to be more potent than those with a chloride ligand. The 4’-fluoro compounds show a reduction in potency for both chloride and bromide complexes against all cell lines, but an increase in selectivity towards cancer cells compared to non-cancer ARPE-19 cells, with a selectivity index >1. Mechanistic studies showed a clear correlation between IC50 values and induction of cell death by apoptosis
102

Novel Ran-RCC1 inhibitory peptide-loaded nanoparticles have anti-cancer efficacy in vitro and in vivo

30 October 2019 (has links)
Yes / The delivery of anticancer agents to their subcellular sites of action is a significant challenge for effective cancer therapy. Peptides, which are integral to several oncogenic pathways, have significant potential to be utilised as cancer therapeutics due to their selectivity, high potency and lack of normal cell toxicity. Novel Ras protein-Regulator of chromosome condensation 1 (Ran-RCC1) inhibitory peptides designed to interact with Ran, a novel therapeutic target in breast cancer, were delivered by entrapment into polyethylene glycol-poly (lactic-co-glycolic acid) PEG-PLGA polymeric nanoparticles (NPs). A modified double emulsion solvent evaporation technique was used to optimise the physicochemical properties of these peptide-loaded biodegradable NPs. The anti-cancer activity of peptide-loaded NPs was studied in vitro using Ran-expressing metastatic breast (MDA-MB-231) and lung cancer (A549) cell lines, and in vivo using Solid Ehrlich Carcinoma-bearing mice. The anti-metastatic activity of peptide-loaded NPs was investigated using migration, invasion and colony formation assays in vitro. A PEG-PLGA-nanoparticle encapsulating N-terminal peptide showed a pronounced antitumor and anti-metastatic action in lung and breast cancer cells in vitro and caused a significant reduction of tumor volume and associated tumor growth inhibition of breast cancer model in vivo. These findings suggest that the novel inhibitory peptides encapsulated into PEGylated PLGA NPs are delivered effectively to interact and deactivate Ran. This novel Ran-targeting peptide construct shows significant potential for therapy of breast cancer and other cancers mediated by Ran overexpression.
103

Structure-based drug design of allosteric ecto-5'-nucleotidase inhibitors : application to cancer treatment / Développement d'inhibiteurs allostériques de l'ecto-5'-nucléotidase (CD73) : application aux traitements anticancéreux

Rahimova, Rahila 15 September 2017 (has links)
Le cancer représente l'un des problèmes majeurs en santé publique. Jusqu'à présent, en parallèle de l'intervention chirurgical, plusieurs traitements ont été mis au point et largement utilisés en thérapie clinique telles que les chimiothérapies. Cependant, leur efficacité est parfois limitée et couplée à des effets secondaires très néfastes, laissant les patients dans une impasse thérapeutique. Par conséquent, de nouvelles approches thérapeutiques doivent être développées sur de nouvelles cibles avérées en oncologie afin d'apporter des soins personnalisés aux patients. La première partie de mon travail de thèse a été dédiée à la compréhension des mécanismes moléculaires de la nucléotidase cytosolique de type II (cN-II), une enzyme du métabolisme des purines dont l'implication dans des phénomènes de résistance à des traitements anticancéreux a pu être démontrée. Aussi, une étude sur la cinétique enzymatique à l'état pré-stationnaire et stationnaire a été entreprise sur la forme sauvage et une forme mutée de l'enzyme lui conférant une activité accrue fortement impliquée dans les cas de résistance. Par cette approche, il a été possible de décortiquer le mécanisme cinétique, de définir l'étape cinétiquement limitant afin d'identifier les intermédiaires prépondérants de la réaction pouvant être ciblés pour le développement de nouveaux inhibiteurs. Cette étude cinétique est présentée dans ce premier volet de la thèse. En second lieu, mon travail s'est focalisée sur un second membre de cette famille d'enzyme qui est l'ecto-5'-nucléotidase (CD73). Cette enzyme exprimée sous forme dimérique à la surface extracellulaire régule la concentration en adénosine extracellulaire (par hydrolyse de l'adénosine monophosphate), ce dernier étant un puissant immunosuppresseur de la réponse immune anticancéreuse. L'objectif de mon travail de thèse a été de développer de nouveaux inhibiteurs de type allostérique en utilisant une approche basée sur la structure tridimensionnelle et la dynamique moléculaire. Une des étapes clés a été tout d'abord de mettre au point un système expression hétérologue afin d'obtenir l'enzyme recombinante en quantité suffisante pour les études enzymatiques ultérieures. Différents systèmes d'expression ont été testés et seul le système en cellules d'insecte infectées par le baculovirus a permis d'obtenir l'enzyme active en grande quantité. En parallèle, une étude in silico a permis de reproduire la dynamique fonctionnelle de l'enzyme requise pour sa fonction. A partir de ses données, un criblage virtuel d'une chimiothèque de 324 000 molécules a été réalisé sur le site de dimérisation et a permis d'identifier 33 composés chefs de files. Parmi, ces composés, dix molécules se sont avérés être de puissants inhibiteurs de CD73 (Ki < 1 µM) avec un mécanisme d'inhibition de type allostérique ou non-compétitif. La cytotoxicité des composés a été évaluée sur des lignées cellulaires transformées ou tumorales montrant un effet uniquement à des concentrations très élevées (supérieures à 100 µM). L'étude des relations structure-fonction devrait permettre à présent de proposer de voies d'optimisation afin d'améliorer l'efficacité des composés les plus actifs afin d'aboutir à de nouveaux candidats médicaments. / Cancer burden still remains a major worldwide health problem. To date, several types of conventional anticancer treatments are widely used in clinical. However, the alternative effects of these treatments often leave patients impaired. Therefore, it is required to understand the unique medical needs of individual patients and to conduct effective, high–quality research focusing on the not yet identified oncotargets.The first part of my thesis is dedicated to decipher molecular basis of cN-II reaction. This study characterizes the steady state and transient state kinetics of cN-II wild type and hyperactive mutant which involved in cancer treatment resistance. Furthermore, the characterization of the rate-limiting step and reaction intermediates gave insights into the binding mechanisms and the development of small molecules inhibitors of cN-II.In the second part of this work, we aimed to investigate allosteric inhibitors of CD73 using structure-based drug design approach. In this study the suitable protein expression system was established for the production of sufficient quantities of fully active CD73. This work followed by in silico studies, including molecular dynamics, virtual screening, and hits identification and in vitro hits validations and kinetics characterizations. The cytotoxicity of the most powerful inhibitors exhibited on different cell types was determined. SAR studies gave insights into the binding mode of best compounds and function.
104

Rôle des Pioneer Translation Products (PTPs) dans la réponse immunitaire anti-tumorale. / Role of Pioneer Translation Products (PTPs) in the immune response against cancer.

Pierson, Alison 20 December 2017 (has links)
Les vaccins thérapeutiques anti-tumoraux reposent sur l’activation du système immunitaire adaptatif et sont basés sur la reconnaissance des antigènes tumoraux (AT) par les lymphocytes T auxiliaires et cytotoxiques spécifiques. Leur efficacité nécessite une sélection méticuleuse des antigènes cibles ainsi qu’une présentation antigéniques par le CMH de classe I (CMH-I) dans les tumeurs non modifiée. Alors que l’attention s’est d’abord portées uniquement sur les AT dérivés de séquences exoniques, ceux dérivés d’évènements de traduction alternatifs ont été montrés comme ayant un fort potentiel en tant que cibles. Ces derniers peuvent dérivés d’une traduction de séquences dîtes « non traduites », initiée par des codons alternatifs ou dans un cadre de lecture non canonique. Une telle traduction alternative des ARN épissés dans le noyau et donnant naissance aux Pioneer Translation Products (PTPs) a été décrite. Ces derniers ont été montrés comme source de peptides pour la voie de présentation des antigènes par le CMH-I. Récemment, nous avons montré que les antigènes dérivés des PTPs et présentés par les tumeurs sont capables d’entrainer une réponse lymphocytaire T cytotoxique in vivo et de contrôler la croissance tumorale. Lors de ma thèse, nous avons identifié la molécule inhibitrice de l’épissage isoginkgetin comme modulateur positif de cette présentation dans les cellules cancéreuses. De plus, nous avons observé qu’un de ses dérivées, l’IP2, qui est soluble dans l’eau et moins toxique que l’isoginkgetin, est de même capable d’augmenter la présentation des antigènes dérivés des PTPs dans les tumeurs in vitro, ainsi que de réduire la croissance tumorale in vivo de manière dépendante de la réponse immunitaire. Ainsi, le composé IP2 se révèle être un immunomodulateur de la réponse anti-tumorale efficace et prometteur pour le développement de nouvelles stratégies thérapeutiques. / Anti-tumoral therapeutic vaccines rely on the activation of the adaptative immune system and are based on the recognition of tumor antigens (TA) by specific helper and cytotoxic T lymphocytes (CTL). Their efficacy requires a careful selection of the targeted antigens as well as an unaltered MHC class I (MHC-I) antigenic presentation in tumors. While the focus was first put on exome-derived TA, evidences highlighted the ones derived from alternative translations as having a high potential as T-cells targets. These can be derived from translation of allegedly non coding sequences, initiated at alternative codons or performed in non-canonical open reading frames. Such an alternative translation occurring from pre-spliced mRNAs in the nucleus has been described as giving rise to the Pioneer Translation Products (PTPs), which constitute a source of polypeptides for the MHC-I pathway. Recently, we showed that PTPs-derived antigens presented by tumors are able to elicit a CTL response in vivo that controls tumor growth. Here, we identified one positive modulator of PTPs-derived antigenic presentation in cancer cells: the splicing inhibitor isoginkgetin. Then, we provided one of its derivatives, the IP2, which is water soluble and less toxic than the isoginkgetin, and showed that IP2 treatment increases PTPs-derived antigenic presentation of cancer cells in vitro and reduces tumor growth in vivo in an immune-dependent manner. Hence we describe here the IP2 as a new efficient immunomodulator of the antitumor response, promising for the development of innovative therapeutic strategies.
105

Design and synthesis of new metallo-organic complexes and their evaluation as anti-cancer agents : synthesis, characterisation and biological evaluation of novel, late first row transition metal Schiff base complexes, as anti-cancer metallopharmaceuticals

Lidster, Jon January 2011 (has links)
This work is concerned with the design and synthesis of the cheap, late first row transition metal complexes of Schiff base ligand systems. The prepared complexes readily afford systematic variation in order to probe potency and understand the role of metal, chelating ligands and anionic ligands when carrying out their cytotoxic effect. This study has lead to a better understanding of the action of these classes of complex and will be used to direct the design of new anti-cancer metallopharmaceuticals going forward. This thesis details the synthesis of a library of Schiff base macroacyclic ligands and their novel late first row transition metal complexes with varying anionic counterparts. The creation of a library with several degrees of variability provides a wide array of parameters to afford subtle variation in structure and chemistry e.g. denticity, co-ordination mode, chelate hole size, metal centred redox potentials, hydrolysis rates, co-ordinative saturation, lipophilicity, solubility and more. Complexation of the ligands was carried out by the free ligand and a novel macroacyclic metal template approach using the cheap late first row transition metal salts of Cobalt (II), Nickel (II), Copper (II) and Zinc (II) plus one Ru (III) complex. Structural studies of the 80 generated complexes was carried out by vibrational spectroscopy, elemental analysis, mass spectrometry, magnetic susceptibility and NMR. Single crystal X-ray structures have been determined with 20 reported in this thesis. All ligands act as tridentate ligands in all except one case to form monomeric distorted trigonal-bipyramidal, square-pyramidal or octahedral structures. In the case of zinc nitrate, the ligand L2PhMe acts as a tetradentate ligand to give a distorted octahedral structure. Paramagnetic NMR and solution magnetic susceptibility of paramagnetic complexes was achieved by the Evans NMR method and analysis of the solution NMR showed that L2R and L3R ligands display 2-fold symmetry and are likely either tetradentate in solution or a fast exchange between imine N-donar sites is occurring even down to -65°C. The majority of the resulting complexes of L1R were screened against a panel of three cancer cell lines. Several categories of complex were able to afford structure activity relationships. It was discovered that the ligand is indeed essential for activity of the metal salts against the panel of cell lines and it was largely discovered that the variation in 'tail group' and anionic coordinating ligands played little role in providing a dramatic variation in activity of the metal salt. In general all L1R complexes displayed moderate cytotoxicity showing a trend in activity with respect to the metal in the order RuIII≈CoII>CuII≈ZnII>NiII, over a 6 day exposure to the three cell panel RuIII was shown to be the most potent metal of the L1R series providing IC50 values of 4.6 (0.7) and 7.5 (1.2) μM against the DLD-1 and H460 cell lines respectively, which is Ca. 4.6 and 15 times less potent than cisplatin to the same cell panel respectively. RuIII was also discovered to be the only metal to provide an IC50 value from a 1 hour exposure to the DLD-1 cell panel. The value of 20.4 (3.5) μM is a moderate figure but again Ca. 10 fold less potent than cisplatin for the same test. The L2R and L3R complexes could not be screened by the same comprehension due to their low solubilities. However the lone screen that was possible from the very sparingly soluble complex [CuCl2(L3Bui)] gave the most exciting result and most potent complex of this thesis. After a 6 day exposure, [CuCl2(L3Bui)] gave IC50 values of 4.3 (0.1) and 2.9 (0.1) μM against the DLD-1 and H460 cell lines respectively. These values are merely 4 and 6 fold more than Cisplatin to the same cell lines respectively and demonstrates the potential of this class of complex as cytostatic agents. Further studies utilising a semi-quantitative DNA damaging assay, demonstrated that all first row complexes can damage DNA when in the presence of hydrogen peroxide, with the exception of ZnII complexes. CoII appeared to afford the greatest DNA damage with the most intsense bands for double strand breaks and the CuII complex of the ligand L3Bui also demonstrated a greater DNA damage as opposed to its L1Bui analogue.
106

Proteom nádorové buňky a studium změn po působení protinádorových léčiv / "The cancer cell proteome and its changes after anti-cancer drug treatment".

Tylečková, Jiřina January 2013 (has links)
Cancers represent a group of unprecedented heterogeneous diseases and currently available anti-cancer therapies provide highly variable efficacy with unsatisfactory cure rates. A wide range of proteomic technologies are being used in quest for newer approaches which could significantly contribute to the discovery and development of selective and specific cancer biomarkers for monitoring the disease state and anti-cancer therapy success. Taking into consideration the above aspects, this research was undertaken to study cancer cell proteomes and their changes after anti-cancer treatment with specific focus on: (a) response to conventional anthracycline/anthracenedione drugs with respect to their different clinical efficacy and (b) identification of novel targets for therapy in cancer cells resistant to biological drugs such as inhibitors of (b1) cyclin-dependent kinases and (b2) Aurora kinases. This study identified several interesting key aspects related to the effects of daunorubicin, doxorubicin and mitoxantrone. With the main focus on early time intervals when the influence of apoptosis is minimised, changes common for all three drugs belonging mainly to metabolic and cellular processes were observed. More importantly, significant changes in proteins involved in the generation of precursor...
107

Quantitative pharmacoproteomics investigation of anti-cancer drugs in mouse : development and optimisation of proteomics workflows for evaluating the effect of anti-cancer drugs on mouse liver

Abumansour, Hamza M. A. January 2016 (has links)
Minimizing anti-cancer drug toxicity is a major challenge for the pharmaceutical industry. Toxicity is most frequently due to either the direct interaction of the drug on previously unidentified targets or its conversion to metabolites by drug metabolizing enzymes (e.g. CYP450 enzymes) that cause cellular, tissue or organ damage. Pharmacoproteomics is beginning to take a central role in studying changes in protein expression corresponding to drug administration, the results of which, inform about the mode of action, toxicity, and resistance in pre-clinical and clinical stages of drug development. The main aim of this research is to apply comparative proteomics studies on livers from male and female mice xenograft models treated with major anti-cancer drugs (5-flourouracil, paclitaxel, cisplatin, and doxorubicin) and CYP inducer, TCPOBOP, to investigate their effect on protein expression profiles (proteome). Within this thesis, an attention is paid to optimise a highly validated proteomics workflow for biomarker identification. Proteins were extracted from liver microsomes of mice treated in two separate sets; Set A – male (5-fluoruracil, doxorubicin, cisplatin and untreated) or Set B – female (5-fluoruracil, paclitaxel, TCPOBOP and untreated) using cryo-pulverization and sonication method. The extracts were digested with trypsin ii and the resulting peptides labelled with 4-plex iTRAQ reagents. The labelled peptides were subjected for separation in two-dimensions by iso-electric focusing (IEF) and RP-HPLC techniques before analysis by mass spectrometry and database searching for protein identification. Set A and Set B resulted in identification and quantification of 1146 and 1743 proteins, respectively. Moreover, Set A and Set B recovered 26 and 34 cytochrome P450 isoforms, respectively. The microsomal changes after drug treatments were quite similar. However, more changes were observed in the male set. Up-regulation of MUPs showed the greatest distinction in the protein expression patterns in the treated samples comparing to the untreated controls. In Set A, 5-fluoruracil and cisplatin increased the expression of three isoforms (MUP1, 2, and 6), whereas doxorubicin has increased the expression of four isoforms (MUP1, 2, 3, and 6). On the other side, only TCPOBOP in Set B has increased the expression of two isoforms (MUP1 and 6). Our findings showed that the expression of MUP, normally involved in binding and excretion of pheromones, have drug- and sex-specific differences. The mechanism and significance of MUP up-regulation are ambiguous. Therefore, the impact of each therapeutic agent on MUP and xenobiotic enzymes will be discussed.
108

Synthesis, Structure, Function and Biomedical Studies of Nucleic Acid Derivatized with Selenium

Lin, Lina 09 April 2010 (has links)
Nucleic acids are macromolecules in cells for storing and transferring genetic information. Moreover, nucleic acids, especially RNAs, can fold into well-defined 3D structures and catalyze biochemical reactions. As ubiquitous biological molecules in all living systems, nucleic acids are important drug targets, and they can also be used in diagnostics and therapeutics. Structural information of nucleic acids provides the foundation for DNA and RNA function studies. X-ray crystallography has been a useful tool for structural studies of bio-macromolecules at atomic level. There are two major problems in macromolecular crystal structure determination: phasing and crystallization. Although selenium derivatization is routinely used for solving novel protein structures through the MAD phasing technique, the phase problem is still a critical issue in nucleic acid crystallography. The covalent selenium-derivatization of nucleic acids has been proven to be a useful strategy for solving the phase problem in nucleic acid X-ray crystallography. Besides the facilitation of nucleic acid crystallography, there is also a wide range of other applications for selenium-derivatized nucleic acids (SeNA). The investigation presented in this dissertation mainly focuses on the following research subjects (1) Synthesis and characterization of selenium-derivatized nucleic acids for X-ray crystallography, especially phosphoroselenoate RNAs. They are generated and used for crystallization. (2) Application of selenium-derivatized RNA for RNA interference. Phosphoroselenoate RNAs are tested for RNAi activities. (3) Synthesis and characterization of the uridine 5’-triphosphate modified with selenium at position 4. (4) Facile synthesis and antitumor activities of selenium modified deoxyribonucleosides. MeSe-thymidine nucleosides have shown antitumor activity in cell assays.
109

Biosynthetic engineering of new pactamycins

Lu, Wanli 28 February 2013 (has links)
Among the myriad of naturally occurring bioactive compounds are the aminocyclopentitol-containing natural products that represent a family of sugar-derived microbial secondary metabolites, such as the antibiotics pactamycin, allosamidin, and trehazolin. Pactamycin, a structurally unique aminocyclitol antibiotic isolated from Streptomyces pactum, consists of a 5-membered ring aminocyclitol (cyclopentitol) unit, two aromatic rings (6-methylsalicylic acid (6-MSA) and 1-(3-Amino-phenyl)-ethanone or 3-aminoacetophenone) and a 1,1-dimethylurea. It has pronounced antibacterial, antitumor, antiviral, and antiplasmodial activities, but its development as a clinical drug was hampered by its broad cytotoxicity. Efforts to modulate its pharmacological and toxicity properties by structural modifications using synthetic organic chemistry have been difficult due to the complexity of its chemical structure. As part of our ongoing studies on the biosynthesis of aminocyclitol-derived bioactive natural products, we have identified the biosynthetic gene cluster of pactamycin in S. pactum ATCC 27456, which paves the way for a better understanding of pactamycin biosynthesis and generating novel pactamycin analogs through biosynthetic engineering. Through gene inactivations, feeding experiments, and in vitro enzymatic assay, we studied the biosynthesis of pactamycin, which include the modes of formation of the unique cyclopentitol unit, the 3-aminoacetophenone and the 6-methyl salicylic acid moieties. Armed with the tools needed to genetically engineer target strains of S. pactum, we were able to produce novel analogs of this untapped-class of natural products. TM-026 was generated from a ΔptmH (a radical SAM C-methyltransferase gene) mutant, whereas TM-025 was generated from a ΔptmH/ΔptmQ (a polyketide synthase gene) double knockout mutant. Both compounds show potent antimalarial activity, but lack significant antibacterial activity, and are about 10-30 times less toxic than pactamycin toward mammalian cells. The results suggest that distinct ribosomal binding selectivity or new mechanism(s) of action may be involved in their plasmodial growth inhibition, which may lead to the discovery of new antimalarial drugs and identification of new molecular targets within malarial parasites. TM-035 was also isolated from a ΔptmH mutant. However, we found that TM-035 showed no activity against bacteria, malarial parasites, and most tested mammalian cells, but it has potent growth inhibitory activity against two well-established human head and neck squamous cell carcinomas (SCC025 and SCC104) (IC₅₀ 725 nM) in an in vitro assay. More intriguingly, the compound is significantly less active against human primary epidermal keratinocytes (HPEK), demonstrating an interesting biological phenomenon and outstanding cell type selectivity, which may lead to the development of new anticancer chemotherapy. The production yield of pactamycin and its congeners under laboratory conditions is relatively low. This has hampered both mechanistic and preclinical studies of these promising compounds. To deepen our understanding of pactamycin biosynthesis and engineer mutant strains with improved production yields, we investigated pathway specific regulatory genes, ptmF and ptmE. Based on gene inactivation and RT-PCR studies, we found that the PtmF-PtmE system controls the transcription of the whole biosynthetic gene cluster. The results provide important insight into regulation of pactamycin biosynthesis and will contribute to future studies that aim at engineering high producing strains of S. pactum. / Graduation date: 2012 / Access restricted to the OSU Community at author's request from Feb. 28, 2012 - Feb. 28, 2013
110

Safety evaluation of low level light therapy on cancer cells

Jeong, Andrew S. 15 June 2016 (has links)
OBJECTIVE: Low level light therapy (LLLT) is being widely used in wound healing and pain relief, and its use is expected to be expanded rapidly to treatment of other disorders as well in a foreseeable future. However, before its expansion, the fear that LLLT could initiate or promote metastasis must be addressed thoroughly. As an initial effort towards this end, the current study evaluates the safety of LLLT in vitro using two different human cancer cell lines (Michigan Cancer Foundation-7 (MCF-7) and Jurkat E6-1) by determining the viability of cells after low level light (LLL) application while treatment under anti-cancer chemotherapeutic drugs (5-fluorouracil (5-FU) and cisplatin) separately on each cell line. METHODS: Two human cancer cell lines (MCF-7 and Jurkat E6-1) were cultured throughout the experiments. Two different anti-cancer chemotherapeutic drugs (5-FU and cisplatin) were used to treat both cell lines. The half maximal inhibitory concentration (IC50) of each drug on each cell line was determined by treating each cell line with varying concentrations of each drug. A total of 3 or 4 trials were done for each cell line with each drug, and the range of concentration was narrowed closer to the IC50 value at each successive trial. Once the IC50 concentrations were determined, each cell line was treated with 808 nm LLL at varying energy densities in a single dose using a light emitting diode (LED) source both in the absence and the presence of each drug at one IC50. A total of 3 or 5 trials were done for each cell line with each drug, and for each trial, six different energy densities ranging from 0 J/cm2 (control) to 10 J/cm2 were applied. The energy densities were varied for each trial with control always being used. After application of LLL, the viability of cells was determined, and three different 1-way ANOVA (Analysis of Variance) analyses were done to compare the viability of cells at each energy density to that of control. RESULTS: The IC50 of 5-FU in MCF-7 and Jurkat E6-1 cells was determined as 70 µM and 20 µM respectively. The IC50 of cisplatin in MCF-7 and Jurkat E6-1 cells was determined as 17 µM and 7 µM respectively. No significant difference (P > 0.05) in the viability of MCF-7 cells was observed between each group treated with different energy density of LLL and control group (0 J/cm2) both in the absence and the presence of 5-FU at IC50 (70 µM). No significant difference (P > 0.05) in the viability of MCF-7 cells was observed between each group treated with different energy density of LLL and control group (0 J/cm2) both in the absence and the presence of cisplatin at IC50 (17 µM). No significant difference (P > 0.05) in the viability of Jurkat E6-1 cells was observed between each group treated with different energy density of LLL and control group (0 J/cm2) both in the absence and the presence of 5-FU at IC50 (20 µM). However, a significant increase (0.01 < P < 0.05) in the viability of cells was observed when treating Jurkat E6-1 cells with 10 J/cm2 of LLL in the presence of cisplatin at IC50 (7 µM) compared to control group (0 J/cm2). Except for the comparison mentioned previously, no significant difference in the viability of Jurkat E6-1 cells was observed between each group treated with different energy density of LLL and control group (0 J/cm2) both in the absence and the presence of cisplatin at IC50 (7 µM). No definite trend in the viability of cells was observed with increasing energy density of LLL for each cell line either in the absence of the presence of each drug at IC50. CONCLUSIONS: The application of LLL at 808 nm with energy densities ranging from 0.1 J/cm2 to 10 J/cm2 under an LED source did not induce cell proliferation or death compared to control (0 J/cm2) for each cell line in the absence or the presence of each drug, and no definite trend was observed with increasing energy density. The study suggests that LLLT at these parameters may be safe to use on cancer patients, but further studies on different cancer cell lines and animal models with different parameters (wavelength, energy density, dosage) of LLL are warranted.

Page generated in 0.086 seconds