• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 8
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Expanded Indenofluorenes: From Structure to Theory

Frederickson, Conerd 31 October 2018 (has links)
As humanity moves into the future, the demand for new electronic devices increases. Flexible electronics that could be bendable, wearable, and/or biocompatible are more desired and, fortunately, closer to our grasp than ever. In order to produce these new devices, electronic materials not based on ridged, brittle crystals are needed. One candidate for these new electronics are organic electronic materials. Organic electronic materials have the potential to lead to devices that are flexible, simple to produce and that can take advantage of state-of-the-art processes like non-linear optics, spintronics and singlet fission. In order to access these exciting new devices, however, a better understanding of the type of conjugated organic molecules on which they will be based is needed. This dissertation explores the expansion of the indenofluorene project from a rotation student’s small spin off to an examination of a full class of materials. First, this document details the synthesis of donor-acceptor-donor triads using indenofluorene starting material, the dione, as the acceptor portion. What follows is an in-depth examination of the aromatic and antiaromatic properties of the class of materials we deemed diarenoantiaromatics. The computational techniques used are expanded along with the antiaromatic core of each molecule in order to evaluate the diradical character of the core expanded molecules being synthesized by my lab mates. Finally, the synthesis and characterization of a nine ring, linear dianthracenoindacene and the progress toward the thirteen ring dipentacenoindacene isomers are described. / 10000-01-01
2

Acremolin, a stable natural product with an antiaromatic 1H-azirine moiety? A structural reorientation

Banert, Klaus 13 October 2014 (has links) (PDF)
Recently, acremolin (4), a novel modified base, was isolated from a marine-derived fungus and claimed to possess a structure with a 1H-azirine moiety. It is shown now that the reported NMR data are not compatible with this antiaromatic heterocycle, which should be an extremely unstable compound. An isomeric, substituted N2,3-ethenoguanine is presented as a plausible alternative structure of acremolin that is consistent with all spectroscopic data. Thus, 1H-azirines keep their classification as very short-lived intermediates.
3

Synthesis of Stable 1H-Azirines Reinvestigated: A Structural Corrigendum

Banert, Klaus, Hagedorn, Manfred, Peisker, Heiko 13 October 2014 (has links) (PDF)
The isoquinoline-catalyzed synthesis of pretended 1H-azirines from phenacyl bromides and N,N\'-dialkylcarbodiimides was repeated. The products do not possess the structure of antiaromatic 1H-azirines, but simple N-acyl-N,N\'-dialkylureas were formed instead. This structural corrigendum was confirmed by the independent synthesis of the known ureas and comparison of their 1H NMR and 13C NMR spectroscopic data in the case of six compounds. Thus,1H-azirines keep their classification as very short-lived intermediates.
4

Pyrene-Fused s-Indacene

Melidonie, Jason, Liu, Junzhi, Fu, Yubin, Weigand, Jan J., Berger, Reinhard, Feng, Xinliang 06 January 2020 (has links)
One antiaromatic polycyclic hydrocarbon (PH) with and without solubilizing tert-butyl substituents, namely s-indaceno[2,1-a:6,5-a′]dipyrene (IDPs), has been synthesized by a four-step protocol. The IDPs represent the longitudinal, peri-extension of the indeno[1,2-b]fluorene skeleton towards a planar 40 π-electron system. Their structures were unambiguously confirmed by X-ray crystallographic analysis. The optoelectronic properties were studied by UV/vis absorption spectroscopy and cyclic voltammetry. These studies revealed that peri-fusion renders the IDP derivatives with a narrow optical energy gap of 1.8 eV. The maximum absorption of IDPs is shifted by 160 nm compared to the parent indenofluorene. Two quasi-reversible oxidation as well as reduction steps indicate an excellent redox behavior attributed to the antiaromatic core. Formation of the radical cation and the dication was monitored by UV/vis absorption spectroscopy during titration experiments. Notably, the fusion of s-indacene with two pyrene moieties lead to IDPs with absorption maxima approaching the near infrared (NIR) regime.
5

π-Extended and Curved Antiaromatic Polycyclic Hydrocarbons

Liu, Junzhi, Ma, Ji, Zhang, Ke, Ravat, Prince, Machata, Peter, Avdoshenko, Stanislav, Hennersdorf, Felix, Komber, Hartmut, Pisula, Wojciech, Weigand, Jan J., Popov, Alexey A., Berger, Reinhard, Müllen, Klaus, Feng, Xinliang 06 January 2020 (has links)
Synthesis of antiaromatic polycyclic hydrocarbons (PHs) is challenging because the high energy of their highest occupied molecular orbital and low energy of their lowest unoccupied molecular orbital cause them to be reactive and unstable. In this work, two large antiaromatic acene analogues, namely, cyclopenta[pqr]indeno[2,1,7-ijk]tetraphene (CIT, 1a) and cyclopenta[pqr]indeno[7,1,2-cde]picene (CIP, 1b), as well as a curved antiaromatic molecule with 48 πelectrons, dibenzo[a,c]diindeno[7,1,2-fgh:7′,1′,2′-mno]-phenanthro[9,10-k]tetraphene (DPT, 1c), are synthesized on the basis of the corona of indeno[1,2-b]fluorene. These three antiaromatic PHs possess a narrow energy gap down to 1.55 eV and exhibit high kinetic stability under ambient conditions. Moreover, these compounds display reversible electron transfer processes in both the cathodic and anodic regimes. Their cation and anion radicals are characterized by in situ vis−NIR absorption and electron paramagnetic resonance spectroelectrochemistry. The X-ray crystallographic analysis confirms that while CIP and CIT manifest planar structures, DPT shows a curved πconjugated carbon skeleton. The synthetic strategy starting from ortho-substituted benzene units to construct five-membered rings in this work provides a unique entry to novel pentagon-embedding or curved antiaromatic polycyclic hydrocarbons. In addition, besides the detailed chemical and physical investigations, microscale single-crystal fiber field-effect transistors were also fabricated.
6

Theoretical Investigations Of Structure, Energy And Properties Of A Few Inorganic Compounds

Satpati, Priyadarshi 07 1900 (has links)
This thesis reports the theoretical investigations aimed at understanding the structure, stability and properties of a few inorganic compounds. The first chapter presents an introductory overview of the theories used to solve the questions addressed in the thesis. A brief discussion of the work is also presented here. The second chapter deals with electron reservoirs which have been one of the basic motifs of single-electron device. Mononuclear vinylidene complexes of type Mn(C5H4R’)(R” 2 PCH2CH2PR "2)= C = C(R1)(H) were synthesized and reported [Venkatesan et al, Organometallics 25, 5190 (2006)] as potential electron reservoirs capable of storing and releasing electrons in a reversible fashion. These compounds have been of great interest because their red-ox chemistry (reversible oxidative coupling and reductive decoupling) is governed by the C - C bond. However slow oxidation of the mononuclear vinylidene complexes leads to undesired product. In our model compound Mn(C5H5)(PH3)2 = C = C(R1)(H), we substituted the cyclopentadienyl moiety by isolobal dianionic dicarbollyl ligand Dcab2- (C2B9H2-11 ). This simple substitution could reduce the production of undesired product. Calculations of vertical detachment energy, thermodynamic feasibility and molecular orbital analysis showed that this substitution was thermodynamically feasible and led to easy oxidation and dimerization of the parent compound accompanied with better reversibility of the reaction. The effect of substituents (R = H,Me,Ph) on Cβ atom of our model system was also analyzed. The substituent on β carbon had a great effect on the stability and reactivity of these complexes. Our comparative study between Mn(C5H5)(PH3)2 = C = C(R)(H) and Mn(Dcab)(PH3)2 = C = C(R)(H)−1 (where R = H,Me,Ph) predicted the latter to be a more potential electronic reservoir. Gas-phase observations on MAl 4- (M = Li, Na, Cu) and Li3Al-4 coupled with computations led to the conclusion that Al42− [Boldyrev and Wang et al, Science 291, 859 (2001)] is “aromatic” while Al44- is “antiaromatic” [Boldyrev and Wang et al, Science 300, 522 (2003)]. It has been reported by Pati et al [J. Am. Chem. Soc. 125, 3496 (2005)] that co-ordination with a transition metal can stabilize the “antiaromatic” Al4Li4. In the first section of chapter three, it has been reported that Al4Li4 can also be stabilized by capping it with main group element like C and its isoelectronic species BH. Calculations of binding energy, nuclear independent chemical shift (NICS), energy decomposition analysis and molecular orbital analysis supported the capping induced stability, reduction of bond length alternation and increase of aromaticity of these BH/C capped Al4Li4 systems. The interaction between px and py orbitals of BH/C and the HOMO and LUMO of Al4Li4 was responsible for such stabilization. Calculations suggested that capping might introduce fluxionality in the molecule at room temperature. Al has valence electronic configuration of s2p1 and Al42− has been shown to have multiple aromaticity [Boldyrev and Wang et al, Science 291, 859 (2001)]. Analogy between electronic configuration s2pof Al and d1sof Sc/Y prompted us to explore the aromaticity of M42− clusters (M = Sc, Y ) which have been described in the second section of chapter three. Different geometries of M42− clusters (M = Sc, Y ) were explored, and the planar butterfly-like D2h geometry (two fused triangles) was found to be the most stable isomer. This is unlike the case of Al42− where D4h isomer was the most stable one as reported in the literature. In D2h geometry of M42− clusters (M = Sc, Y ), significant electron delocalization in each wing of the butterfly indicated fused d aromaticity. Atomization energy and chemical hardness supported the preference of D2h geometry over the D4h geometry. Molecular orbital analysis showed that the d-electrons were delocalized in each triangle of D2h geometry. Our interest in the search of new kinds of binuclear sandwich compounds led us to consider sandwiched metal dimers CB5H6M - MCB5H6 (M = Si, Ge, Sn) which are at the minima in the potential energy hypersurface with a characteristic M - M single bond. This work has been described in the first section of chapter four. The NBO analysis and the M - M distances ( ˚A) (2.3, 2.44 and 2.81 for M= Si, Ge, Sn respectively) indicated substantial M - M bonding. Consecutive substitution of two boron atoms in B7H7−2 by M (Si, Ge, Sn) and carbon respectively led to neutral MCB5H7, where M - H bond bent towards the carbon side of the five membered ring. Dehydrogenation of two MCB5H7 might lead to our desired CB5H6M - MCB5H6 where similar bending of M -M bond has been observed. The bending of M - M bond in CB5H6M -MCB5H6 was more than the M - H bending in MCB5H7. Molecular orbital analysis has been done to understand the bending. Larger M - M bending observed in CB5H6M - MCB5H6 in comparison to M - H bending observed in MCB5H7 was suspected to be favored by stabilization of one of the M - M π bonding MO’s. Preference of M to occupy the apex of pentagonal skeleton of MCB5H7 over its icosahedral analogue MCB10H11 has been observed. Structures of sandwiched binuclear L- M – M - L where M = Ti, Zr and L = Cp, C3B3H6 were also investigated as described in second section of chapter four. We found that these compounds having bent geometry with short M - M distance (1.87˚A for M=Ti and 2.29˚A for M=Zr) lie at the minima in the potential energy hypersurface. Bending from the linear geometry led to the stabilization of M - L antibonding interaction in L - M – M - L. Molecular orbital analysis, NBO calculations, Wiberg bond index and charge analysis suggested M2+ unit to be embedded in between two L’s in L - M – M - L. Molecules that have the ability to perform interesting mechanical motions have always been of great interest. Umbrella inversion of ammonia is one of the most interesting and well studied phenomena. This study has led to the development of the MASER. The possibility of inversion of the molecule C9H9−Li+ by the movement of Li+ through the C9H9−ring was studied earlier [Das et al, Chem. Phys. Lett. 365, 320 (2002)]. In the fifth chapter theoretical investigation on a B12 cluster has been reported, which could exhibit a through ring umbrella inversion. Calculations showed that a part of the molecule, consisting of a three membered boron ring could invert through the rest, viz., a nine membered boron ring. Using a simple model, the double well potential for the motion was calculated. The barrier for inversion was found to be 4.31 kcal/mol. The vibrational levels and tunneling splitting were calculated using this potential. It was found that the vibrational excitation to the v = 17 level caused large amplitude “inversion oscillation” of the molecule. After considering the tunneling effect, inversion rate at 298K was calculated by using transition state theory and was found to be 1.17 x 1010/s. Finally, in the last chapter the main results of the thesis have been summarized.
7

Acremolin, a stable natural product with an antiaromatic 1H-azirine moiety? A structural reorientation

Banert, Klaus January 2012 (has links)
Recently, acremolin (4), a novel modified base, was isolated from a marine-derived fungus and claimed to possess a structure with a 1H-azirine moiety. It is shown now that the reported NMR data are not compatible with this antiaromatic heterocycle, which should be an extremely unstable compound. An isomeric, substituted N2,3-ethenoguanine is presented as a plausible alternative structure of acremolin that is consistent with all spectroscopic data. Thus, 1H-azirines keep their classification as very short-lived intermediates.
8

Synthesis of Stable 1H-Azirines Reinvestigated: A Structural Corrigendum

Banert, Klaus, Hagedorn, Manfred, Peisker, Heiko January 2012 (has links)
The isoquinoline-catalyzed synthesis of pretended 1H-azirines from phenacyl bromides and N,N\'-dialkylcarbodiimides was repeated. The products do not possess the structure of antiaromatic 1H-azirines, but simple N-acyl-N,N\'-dialkylureas were formed instead. This structural corrigendum was confirmed by the independent synthesis of the known ureas and comparison of their 1H NMR and 13C NMR spectroscopic data in the case of six compounds. Thus,1H-azirines keep their classification as very short-lived intermediates.

Page generated in 0.1156 seconds