• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo da eletrogeração de peróxido de hidrogênio utilizando eletrodos de difusão gasosa modificados com 9,10-fenantraquinona para aplicação no tratamento de efluentes contendo os antibióticos am / Study of hydrogen peroxide electrogeneration using gas diffusion electrodes modified with 9,10-phenanthraquinone for use in the treatment of effluents containing the antibiotics amoxicillin and ampicillin

Silva, Fernando Lindo 18 May 2018 (has links)
Fármacos tem sido foco de diversas estudos e pesquisas devido à constatação de sua ocorrência em diversos compartimentos ambientais. Esses compostos, com destaque para os antibióticos, apresentam biodegradação limitada e contínua introdução nos sistemas hídricos devido ao descarte incorreto, eliminação por excreção de parte da dose ingerida e, principalmente, pelo processo de fabricação nas indústrias farmacêuticas. Como as formas convencionais de tratamento têm se mostrado pouco efetivas, a tecnologia eletroquímica associada aos processos oxidativos avançados (POA) têm se mostrado uma maneira eficiente na degradação desses compostos. Em diversos estudos, os eletrodos de difusão gasosa (EDG) são apresentados como uma opção promissora no que diz respeito à eletrogeração de peróxido de hidrogênio, uma das principais fontes de radical hidroxila utilizado nos POA. Nesse aspecto, surgem estudos sobre modificadores que podem atuar como catalisadores nesse processo. Neste trabalho estudou-se o comportamento eletroquímico de dois modificares orgânicos suportados em matriz condutora de carbono Printex 6L. Os compostos orgânicos escolhidos, pertencentes a classe das quinonas, foram a 2-terc-butil-9,10-antraquinona (TBA) e a 9,10 fenantraquinona (FQA). Os estudos foram realizados em um eletrodo de disco/anel rotatório (RRDE), depositando-se uma microcamada porosa, contendo ou não o modificador, sobre o carbono vítreo deste eletrodo. Através dos resultados de voltametria cíclica e linear pode-se avaliar a geração de peróxido de hidrogênio, que foi superior para as microcamadas com adição dos modificadores. O material com 0,5% (m/m) de FQA mostrou-se o mais eficiente entre todos, com 30% de rendimento a mais quando comparado à matriz Printex e 6% maior quando comparada a mesma quantidade de TBA na produção do peróxido. Estudou-se também a eficiência da FQA para a produção de peróxido de hidrogênio (H2O2) a partir da reação de redução do oxigênio gasoso (O2), em eletrodos de difusão gasosa (EDG). Considerando os cinco eletrodos estudados (Printex não modificado e modificado com 0,1, 0,5, 1,0 e 2,0% de FQA) foi realizada uma avaliação sobre qual eletrodo seria o mais apto a ser utilizado nos trabalhos de degradação dos fármacos. Para isso fez-se a análise da concentração de peróxido de hidrogênio eletrogerada, o consumo energético e a cinética envolvida no processo. Os resultados mostraram um aumento significativo na produção de peróxido para os eletrodos modificados com 0,5 e 1,0% de FQA. Sendo que o eletrodo sem modificação atingiu um máximo de 215 ppm de H2O2 em um potencial de -1,4 V com um consumo energético de 29 kWh kg-1 de H2O2. O eletrodo modificado com 0,5% de FQA alcançou 566 pmm de H2O2 em um potencial de -1,4 V com um consumo energético de 14 kWh kg-1 de H2O2. Estudou-se também a degradação dos antibióticos amoxicilina e ampicilina (AMX e AMP) com anodos condutores comerciais de diamante dopados com boro. A influência da densidade de corrente aplicada (15, 30 e 60 mA cm-2) para o mesmo eletrólito de suporte (3 g / L de Na2SO4) e a mesma concentração inicial de antibióticos (100 mg dm-3 cada) foi avaliada. A mineralização total dos antibióticos foi atingida. Além disso, o processo foi encontrado para ser mais eficiente na densidade de corrente de 30 mA cm-2. Os resultados demonstram a importância dos processos eletroquímicos mediados na degradação de AMX e AMP. Esta influência foi confirmada por alguns testes em que a eletrólise foi acoplada à radiação UV ou à radiação ultrassônica. O uso de radiação UV resulta em uma degradação menos eficiente, enquanto que o ultrassom melhora um pouco a taxa de mineralização quando comparado ao processo eletrolítico simples. / Drugs have been the focus of several studies and researches due to the finding of their occurrence in several environmental compartments. These compounds, especially antibiotics, present limited biodegradation and continuous introduction into water systems because of incorrect disposal, elimination by excretion of part of the ingested dose and, mainly, by the manufacturing process in the pharmaceutical industries. As conventional mode of treatment have been shown to be ineffective, electrochemical technology associated with advanced oxidative processes (POA) has been shown to be an efficient way of degradation of these compounds. In several studies, gas diffusion electrodes (EDG) are presented as a promising option with respect to hydrogen peroxide electrogeneration, one of the main sources of hydroxyl radical used in POAs. In this aspect, studies on modifiers appear that can act as catalysts in this process. In this work the electrochemical behavior of two organic modifiers supported in Printex 6L carbon matrix was studied. The organic compounds chosen, belonging to the class of quinones, were 2-tert-butyl-9,10-anthraquinone (TBA) and 9,10-phenanthraquinone (FQA). The studies were performed on a rotating disk / ring electrode (RRDE), depositing a porous micro-layer, containing or not the modifier, on the glassy carbon of this electrode. Through the results of cyclic and linear voltammetry the generation of hydrogen peroxide can be evaluated, which was superior to the micro-layers with addition of the modifiers. The material with 0.5% (w / w) of FQA was the most efficient of all, with 30% more yield when compared to the Printex matrix and 6% higher when compared to the same amount of TBA in peroxide production . It was also studied the efficiency of the FQA for the production of hydrogen peroxide (H2O2) from the reduction reaction of gaseous oxygen (O2) in gaseous diffusion electrodes (EDG). Considering the five electrodes studied (Printex not modified and modified with 0.1, 0.5, 1.0 and 2.0% of FQA) an evaluation was made on which electrode would be the most suitable to be used in the degradation works of the drugs. For that, the analysis of the hydrogen peroxide concentration, the energy consumption and the kinetics involved in the process were analyzed. The results showed a significant increase in peroxide production for electrodes modified with 0.5 and 1.0% of FQA. Since the unmodified electrode reached a maximum of 215 ppm of H2O2 at a potential of -1.4 V with an energy consumption of 29 kWh kg-1 of H2O2. The electrode modified with 0.5% of FQA reached 566 pmm of H2O2 at a potential of -1.4 V with an energetic consumption of 14 kWh kg-1 of H2O2. The degradation of antibiotics amoxicillin and ampicillin (AMX and AMP) with commercial boron-doped diamond conducting anodes was also studied. The influence of the applied current density (15, 30 and 60 mA cm-2) for the same support electrolyte (3 g / L Na2SO4) and the same initial concentration of antibiotics (100 mg dm-3 each) was evaluated. Total mineralization of antibiotics was achieved. In addition, the process was found to be more efficient at current density of 30 mA cm-2. The results demonstrate the importance of the electrochemical processes mediated in the degradation of AMX and AMP. This influence was confirmed by some tests in which the electrolysis was coupled to UV radiation or to ultrasonic radiation. The use of UV radiation results in less efficient degradation, while ultrasound improves the rate of mineralization somewhat compared to the simple electrolyte process.
2

Estudo da eletrogeração de peróxido de hidrogênio utilizando eletrodos de difusão gasosa modificados com 9,10-fenantraquinona para aplicação no tratamento de efluentes contendo os antibióticos am / Study of hydrogen peroxide electrogeneration using gas diffusion electrodes modified with 9,10-phenanthraquinone for use in the treatment of effluents containing the antibiotics amoxicillin and ampicillin

Fernando Lindo Silva 18 May 2018 (has links)
Fármacos tem sido foco de diversas estudos e pesquisas devido à constatação de sua ocorrência em diversos compartimentos ambientais. Esses compostos, com destaque para os antibióticos, apresentam biodegradação limitada e contínua introdução nos sistemas hídricos devido ao descarte incorreto, eliminação por excreção de parte da dose ingerida e, principalmente, pelo processo de fabricação nas indústrias farmacêuticas. Como as formas convencionais de tratamento têm se mostrado pouco efetivas, a tecnologia eletroquímica associada aos processos oxidativos avançados (POA) têm se mostrado uma maneira eficiente na degradação desses compostos. Em diversos estudos, os eletrodos de difusão gasosa (EDG) são apresentados como uma opção promissora no que diz respeito à eletrogeração de peróxido de hidrogênio, uma das principais fontes de radical hidroxila utilizado nos POA. Nesse aspecto, surgem estudos sobre modificadores que podem atuar como catalisadores nesse processo. Neste trabalho estudou-se o comportamento eletroquímico de dois modificares orgânicos suportados em matriz condutora de carbono Printex 6L. Os compostos orgânicos escolhidos, pertencentes a classe das quinonas, foram a 2-terc-butil-9,10-antraquinona (TBA) e a 9,10 fenantraquinona (FQA). Os estudos foram realizados em um eletrodo de disco/anel rotatório (RRDE), depositando-se uma microcamada porosa, contendo ou não o modificador, sobre o carbono vítreo deste eletrodo. Através dos resultados de voltametria cíclica e linear pode-se avaliar a geração de peróxido de hidrogênio, que foi superior para as microcamadas com adição dos modificadores. O material com 0,5% (m/m) de FQA mostrou-se o mais eficiente entre todos, com 30% de rendimento a mais quando comparado à matriz Printex e 6% maior quando comparada a mesma quantidade de TBA na produção do peróxido. Estudou-se também a eficiência da FQA para a produção de peróxido de hidrogênio (H2O2) a partir da reação de redução do oxigênio gasoso (O2), em eletrodos de difusão gasosa (EDG). Considerando os cinco eletrodos estudados (Printex não modificado e modificado com 0,1, 0,5, 1,0 e 2,0% de FQA) foi realizada uma avaliação sobre qual eletrodo seria o mais apto a ser utilizado nos trabalhos de degradação dos fármacos. Para isso fez-se a análise da concentração de peróxido de hidrogênio eletrogerada, o consumo energético e a cinética envolvida no processo. Os resultados mostraram um aumento significativo na produção de peróxido para os eletrodos modificados com 0,5 e 1,0% de FQA. Sendo que o eletrodo sem modificação atingiu um máximo de 215 ppm de H2O2 em um potencial de -1,4 V com um consumo energético de 29 kWh kg-1 de H2O2. O eletrodo modificado com 0,5% de FQA alcançou 566 pmm de H2O2 em um potencial de -1,4 V com um consumo energético de 14 kWh kg-1 de H2O2. Estudou-se também a degradação dos antibióticos amoxicilina e ampicilina (AMX e AMP) com anodos condutores comerciais de diamante dopados com boro. A influência da densidade de corrente aplicada (15, 30 e 60 mA cm-2) para o mesmo eletrólito de suporte (3 g / L de Na2SO4) e a mesma concentração inicial de antibióticos (100 mg dm-3 cada) foi avaliada. A mineralização total dos antibióticos foi atingida. Além disso, o processo foi encontrado para ser mais eficiente na densidade de corrente de 30 mA cm-2. Os resultados demonstram a importância dos processos eletroquímicos mediados na degradação de AMX e AMP. Esta influência foi confirmada por alguns testes em que a eletrólise foi acoplada à radiação UV ou à radiação ultrassônica. O uso de radiação UV resulta em uma degradação menos eficiente, enquanto que o ultrassom melhora um pouco a taxa de mineralização quando comparado ao processo eletrolítico simples. / Drugs have been the focus of several studies and researches due to the finding of their occurrence in several environmental compartments. These compounds, especially antibiotics, present limited biodegradation and continuous introduction into water systems because of incorrect disposal, elimination by excretion of part of the ingested dose and, mainly, by the manufacturing process in the pharmaceutical industries. As conventional mode of treatment have been shown to be ineffective, electrochemical technology associated with advanced oxidative processes (POA) has been shown to be an efficient way of degradation of these compounds. In several studies, gas diffusion electrodes (EDG) are presented as a promising option with respect to hydrogen peroxide electrogeneration, one of the main sources of hydroxyl radical used in POAs. In this aspect, studies on modifiers appear that can act as catalysts in this process. In this work the electrochemical behavior of two organic modifiers supported in Printex 6L carbon matrix was studied. The organic compounds chosen, belonging to the class of quinones, were 2-tert-butyl-9,10-anthraquinone (TBA) and 9,10-phenanthraquinone (FQA). The studies were performed on a rotating disk / ring electrode (RRDE), depositing a porous micro-layer, containing or not the modifier, on the glassy carbon of this electrode. Through the results of cyclic and linear voltammetry the generation of hydrogen peroxide can be evaluated, which was superior to the micro-layers with addition of the modifiers. The material with 0.5% (w / w) of FQA was the most efficient of all, with 30% more yield when compared to the Printex matrix and 6% higher when compared to the same amount of TBA in peroxide production . It was also studied the efficiency of the FQA for the production of hydrogen peroxide (H2O2) from the reduction reaction of gaseous oxygen (O2) in gaseous diffusion electrodes (EDG). Considering the five electrodes studied (Printex not modified and modified with 0.1, 0.5, 1.0 and 2.0% of FQA) an evaluation was made on which electrode would be the most suitable to be used in the degradation works of the drugs. For that, the analysis of the hydrogen peroxide concentration, the energy consumption and the kinetics involved in the process were analyzed. The results showed a significant increase in peroxide production for electrodes modified with 0.5 and 1.0% of FQA. Since the unmodified electrode reached a maximum of 215 ppm of H2O2 at a potential of -1.4 V with an energy consumption of 29 kWh kg-1 of H2O2. The electrode modified with 0.5% of FQA reached 566 pmm of H2O2 at a potential of -1.4 V with an energetic consumption of 14 kWh kg-1 of H2O2. The degradation of antibiotics amoxicillin and ampicillin (AMX and AMP) with commercial boron-doped diamond conducting anodes was also studied. The influence of the applied current density (15, 30 and 60 mA cm-2) for the same support electrolyte (3 g / L Na2SO4) and the same initial concentration of antibiotics (100 mg dm-3 each) was evaluated. Total mineralization of antibiotics was achieved. In addition, the process was found to be more efficient at current density of 30 mA cm-2. The results demonstrate the importance of the electrochemical processes mediated in the degradation of AMX and AMP. This influence was confirmed by some tests in which the electrolysis was coupled to UV radiation or to ultrasonic radiation. The use of UV radiation results in less efficient degradation, while ultrasound improves the rate of mineralization somewhat compared to the simple electrolyte process.
3

Development of Photoactive and Photoelectroactive Nanomaterials for Water Remediation

Eswar, N Krishna Rao January 2018 (has links) (PDF)
Water pollution has become an environmental catastrophe due to the rapid urbanization. The treatment of dumping of waste chemicals in water bodies has contributed to the increase in pollution. In addition to the pollution caused by waste chemicals, faecal bacteria such as Escherichia, Staphylococcus, Pseudomonas etc., can cause serious health issues. Techniques such as filtration and chlorination provide clean water but are associated with disadvantages such as toxic by-products. Although clean water can be still obtained by these techniques, the development of resistance by microorganisms with such conventional treatments of antibiotics is inevitable and poses a new threat. Various researches have taken place in the past few decades to provide clean drinking water. Photocatalysis is considered to be a promising viable alternative for the existing methods to solve the menace of water pollution. It is an advanced oxidation process where the reactive oxygen species are generated by using nanomaterials that can cause degradation of chemicals and pathogens. Particularly, photocatalysis using semiconductors and their composites have been tested for their use in the destruction of contaminants. Several methods have been used in the synthesis of nanomaterials and the variations in their morphologies have resulted in different applications such as photocatalysis and electrocatalysis. Among all semiconductors, TiO2 has been widely used in this application owing to their non-toxicity and abundance in availability. However, TiO2 can be activated only in the presence of UV light. Therefore, the formation of heterojunctions, doping of metals/no- metals in TiO2 has enabled the activation of TiO2 in the visible region. The former approach has also been studied with ceria and silver salts combination. Besides conventional metal oxides, other transitional metal oxides such as copper oxide and bismuth oxide have also been studied owing to its conducting property and facile growth on substrates respectively for enhanced photocatalysis. All the above tweaking has enabled efficient charge separation, band gap reduction, and prevention of recombination. In this thesis, all the nanomaterials and their composites have been synthesized using simple methods such as solution combustion, hydrothermal, solution co-precipitation, and chemical deposition. The primary aim of this thesis is to synthesize various effective nanomaterials with different morphologies, bandgap engineered nanocomposites, metal or non-metal doped metal oxides for efficient waste water treatment of dyes, antibiotics, phenols, and bacteria. Besides, relying on photocatalytic ability, the photoconductivity and intrinsic conducting properties of nanomaterials were exploited to perform photoelectrocatalysis that enhances the rate of decontamination to several orders than photocatalysis. In addition to focusing on increasing the rate of degradation, the main drawback of photocatalysis which is catalyst retrieval has been overcome using conducting substrates and nanomaterial coated substrates for efficient photocatalytic and photoelectrocatalytic decontamination of waste water. All the structural, morphological, chemical and optical properties were thoroughly studied using various characterization techniques such as XRD, SEM, TEM, XPS, UV-DRS, PL respectively. The rate kinetics of dye, antibiotic and phenol degradation was examined. Experimental data was tested with the proposed model in the case of photoelectrocatalytic degradation. The photocatalysts were also studied for its reusability for many cycles. All the proposed works have analyzed the reason for the enhanced activity by performing scavenger reactions to determine the responsible reactive oxygen species. Thus, this thesis exhibits a thorough understanding of how to design and engineer nanomaterials for photocatalytic and photoelectrocatalytic water remediation. The following are the chapters discussed in this thesis. Chapter 1 discusses the drawbacks associated with the current waste water treatment methods and the possibilities of photocatalysis to replace the existing treatments. The advantages of certain transition metals, conventional methods of synthesis and various other properties of the nanomaterials have been discussed. Chapter 2 explains the synthesis of TiO2 nanobelts using combustion synthesized TiO2 under UV and solar irradiation. The catalyst has been characterized for its structural, morphological, chemical and optical properties. The degradation of anionic and cationic dyes and their activity against E.coli bacteria have been evaluated. The efficiency of this catalyst has been compared with commercial Degussa P25. This study shows the morphological influence of nanomaterials on photocatalytic activity. Chapter 3 describes the synthesis of Ag3PO4 impregnated combustion synthesized TiO2 nanobelts using co-precipitation technique. The activity of this material has been studied under solar light. The catalyst has been characterized for its structural, morphological, chemical and optical properties. Similar to the previous chapter, the degradation of dyes and the antibacterial activity of this catalyst has been compared with commercial Degussa P25. This study explains the importance of morphology and charge carrier facilitation in the case of heterojunction formation. Chapter 4 explains the synthesis of ceria nanoflakes by solution combustion method using ascorbic acid as fuel and PEG assisted sonochemical method. The catalyst has been characterized for its structural, morphological, chemical and optical properties. The effect of silver salts such as AgBr on ceria/Ag3PO4 under visible region for degradation of dyes and antibacterial activity has been evaluated. This work elucidates the effect of band engineering in the charge carrier dynamics between interfaces of components within the catalysts. Chapter 5 elucidates the synthesis of vanadium, nitrogen co doped TiO2 catalysts for the simultaneous degradation of microbes and antibiotics. The primary aim of this work is to understand whether interstitial or substituted doped nitrogen will be effective in the presence of vanadium. The photoactivity of this novel catalyst was studied for its synergistic degradation of antibiotics and bacteria simultaneously towards the prevention of microbial resistance towards antibiotics. Chloramphenicol and E.coli were subjected to photodegradation under visible light. Chapter 6 explains the synthesis of copper oxide based nanomaterial for antibiotic and bacterial degradation by photoelectrocatalysis. In order to enhance the rate of photodegradation, photocatalysis has been upgraded with the application of a potential to photocatalytic systems that possess better charge conducting capability. Highly network like copper oxide has been synthesized using conventional combustion synthesis method and compared with copper oxide nanorods synthesized by hydrothermal method. The rate kinetics of photocatalytic and photoelectrocatalytic degradation of antibiotics has been examined thoroughly and validated based on a cyclic network model. This work demonstrates the synergistic rate enhancing capacity upon combining photocatalysis and electrocatalysis. Chapter 7 discusses the fabrication of Cu/CuO/FTO (fluorine doped tin oxide) based substrates for bacterial degradation. Considering the difficulties in photocatalyst retrieval processes and realizing the importance of electrocatalysis, conducting substrates such as Cu strip, FTO were subjected to antibacterial treatment. Formation of copper oxide onto copper strip during the course of reaction forced us to develop CuO/Cu and CuO/FTO interfaces to examine the photocatalytic and photoelectrocatalytic killing of E.coli. Chapter 8 investigates the fabrication of Bi2O3/Ag based material for photocatalytic and photoelectrocatalytic degradation for phenols and substituted phenols. This work starts with fabrication of Bi2O3 working electrodes by chemical deposition. Photodegradation experiments were conducted under UV irradiation and enhancement of the rate of degradation was observed when the working electrode was deposited with silver nanoparticles via chemical reduction method. Formation of the intermediate Bi(OH)x on Bi2O3 or Bi2O3/Ag has resulted in better hydroxyl radical generation upon excitation. Similarly, surface plasmon resonance due to silver nanoparticles was found to be responsible for augmentation in degradation efficiency of phenol. Chapter 9 briefly summarizes the work and provides future directions. The research work thus attempts to design and engineer photocatalytic nanomaterials that are better than the existing materials and emphasizes the importance towards water remediation.

Page generated in 0.1618 seconds