Spelling suggestions: "subject:"antifugal"" "subject:"antifungale""
1 |
Evaluation et amélioration de la sécurité des circuits intégrés analogiques / Evaluation and improvement of analog IC securityBeringuier-Boher, Noémie 30 January 2015 (has links)
Le nombre d'objets connectés utilisés quotidiennement ne cesse d'augmenter. Ces objets manipulent et stockent toute sorte de données personnelles et confidentielles. La contrainte de la sécurité devient alors importante pour la conception des systèmes sur puce (SoCs) destinés à des applications grand public. Et, dans un contexte de plus en plus exigeant en termes de performances et agressif en termes de coûts d'intégration et de développement, il est important de trouver des solutions de sécurisation des SoCs adaptées. Aussi, bien que la sécurité matérielle soit souvent envisagée d'un point de vue numérique, les SoCs actuels sont la plupart du temps mixtes. Les travaux présentés dans ce manuscrit s'intéressent alors à la sécurisation des circuits analogiques composant ces systèmes mixtes. Pour protéger au mieux un système quel qu'il soit, il est avant tout nécessaire d'en connaitre les vulnérabilités. Pour cela, une méthodologie d'analyse des vulnérabilités dédiée aux circuits analogiques a été développée. Ainsi, les contremesures adéquates peuvent être développées avant que le système ne soit complètement conçu. La sécurité du système est alors améliorée sans augmenter considérablement le temps de conception de celui-ci. L'analyse d'un système analogique largement utilisé dans les SoCs actuels et composé de nombreux sous-circuits a permis d'identifier les attaques en faute par Stimulation Photoélectrique Laser (SPL) , et par variation de la tension d'alimentation, comme présentant un risque important pour le système. Mais, a aussi mis en avant certaines difficultés. En effet, les circuits analogiques, contrairement aux circuits numériques, sont sensibles aux fautes paramétriques. Aussi, les nombreuses interconnections entre les différents sous-circuits rendent l'analyse de la propagation des fautes difficile. Pour cela, des simulations du système au niveau transistors sont nécessaires. Ces simulations étant coûteuses en temps, la modélisation des circuits analogiques pour l'analyse des effets des attaques par variations de la tension d'alimentation a été étudiée. Les modèles développés pour cette analyse doivent respecter différentes contraintes spécifiques. L'application de ces contraintes à la modélisation d'un circuit analogique concret a montré que les modèles pouvaient être utilisés pour identifier les formes d'attaques pouvant compromettre la sécurité du circuit. En revanche, l'étude n'a pas permis de déterminer le temps gagné par l'utilisation de modèles. Après avoir identifié les deux types d'attaques précédents et analysé leurs effets sur les circuits analogiques, la problématique de la protection des circuits a été abordée. Les contremesures existantes ont été comparées et évaluées. Pour les compléter, des circuits analogiques de détection d'attaques laser et d'attaques en tension actives ont été conçus en tenant compte des fortes contraintes de coûts et des différentes problématiques présentes au niveau d'un SoC. Les tests électriques de ces détecteurs en technologie CMOS 28nm FD-SOI ont prouvé leur efficacité. Finalement, ce travail présente les différentes étapes de la sécurisation d'un circuit analogique, de l'analyse des vulnérabilités à la conception de contremesures, en passant par la modélisation des attaques et de leurs effets, dans le contexte d'applications mixtes et à bas coût. / With the development of the Internet of things, the number of connected devices is in constant increase. These objects use a large amount of data including personal credentials. Therefore, security has become a major constraint for System on Chips (SoCs) designers. Moreover, in a context more and more aggressive in terms of performances and time to market, it is important to find low cost security solutions. Although the hardware security is often treated from a digital point of view, almost every SoCs is also using analog and mixed IP. Thus, this work presents different steps to improve the security of analog IPs, from vulnerability analysis to countermeasures design validation, and behavioral modeling in the context of mixed signals and low cost applications. To protect any system, the first requirement is to know its vulnerabilities. To do so, a vulnerability analysis methodology dedicated to analog circuit has been developed. Using the results of this analysis, countermeasures can be designed during the development of the circuit and not at the end. The circuit security is thus improved without dramatically increasing its cost in terms of design time. The analysis of a clock system generator, an analog IP widely used in current SoCs and composed with various sub-circuits, has shown fault attacks using Laser Photoelectric Stimulation (LPS) or supply voltage glitches as important threats. After having identified the 2 previous attacks types as major threats, their effects on analog circuits are analyzed. Existing countermeasures are then compared and evaluated for the protection of analog IPs. To complete these solutions, two analog detectors have been designed to detect laser and supply voltage glitch attacks considering SoCs level constraints. Electrical test of these detectors processed on CMOS 28nm FD-SOI technology proved their efficiency. Theoretical vulnerability analysis has shown some difficulties. Indeed, analog circuits are sensitive to numerous parametrical faults. Also, the high interconnection of various sub-circuits makes the faults propagation analysis quite difficult. To help this analysis, electrical simulations at transistor level are necessary. These simulations are quite long and, so the behavioral modeling of analog circuits to help the analysis of supply voltage glitch attack effects has been studied. To do so, the developed models must be developed according different constraints presented in this report and applied to the behavioral modeling of a real analog circuit. This illustration proved that behavioral models can be used to help to identify which attack shapes are the most likely to induce faults in the circuit.
|
2 |
Countering Aging Effects through Field Gate SizingHenrichson, Trenton D. 14 January 2010 (has links)
Transistor aging through negative bias temperature instability (NBTI) has become a major lifetime constraint in VLSI circuits. We propose a technique that uses
antifuses to widen PMOS transistors later in a circuit?s life cycle to combat aging. Using HSPICE and 70nm BPTM process numbers, we simulated the technique on four circuits (a ring oscillator, a fan-out four circuit, an ISCAS c432 and c2670). Over the lifetime of the circuit, our simulations predict a 8.89% and a 13% improvement in power in the c432 and c2670 circuits respectively when compared to similarly performing traditional circuits.
|
3 |
INFRASTRUCTURE AND PRIMITIVES FOR HARDWARE SECURITY IN INTEGRATED CIRCUITSBasak, Abhishek 31 May 2016 (has links)
No description available.
|
4 |
Analysis of ultrathin gate-oxide breakdown mechanisms and applications to antifuse memories fabricated in advanced CMOS processes / Contribution à l'analyse des mécanismes de claquage d’oxyde ultra mince et applications aux mémoires antifusibles en technologies avancéesDeloge, Matthieu 15 December 2011 (has links)
Les mémoires non-volatiles programmables une fois sont en plein essor dans le monde de l’électronique embarquée. La traçabilité, la configuration ou encore la réparation de systèmes sur puce avancés font partis des applications adressées par ce type de mémoire. Plus particulièrement, la technologie antifusible présente des propriétés de sécurité autorisant le stockage d’information sensible.Ce travail de thèse est orienté vers la compréhension des mécanismes de claquage d’oxydes minces sollicités pour la programmation des cellules antifusibles ainsi que l’intégration au niveau système de moyens de détections. Une première étape fut d’étudier les phénomènes de claquage de diélectrique type SiO2 et à haute permittivité sous l’application d’un fort champ ́électrique. Des techniques de mesures dédiées ont été développées afin de réaliser des caractérisations dans les conditions de programmation des mémoires antifusible sollicitant des temps au claquage inférieurs à la micro-seconde. Ces mesures ont ensuite permis l’étude statistique du claquage des diélectriques ainsi que la modélisation sous de hautes tensions ; hors des gammes étudiées traditionnellement dans le domaine de la fiabilité. Le modèle proposé permet l’optimisation des dimensions d’une cellule élémentaire en fonction d’un temps au claquage défini au préalable. Un mécanisme inattendu occasionnant un sur courant substrat a également été mis en évidence pendant la phase de programmation. L’étude de ce phénomène a été réalisée par des caractérisations électriques et des simulations afin de conclure sur l’hypothèse d’un déclenchement d’un transistor bipolaire parasite de type PNP dans la cellule antifusible. L’impact des conditions de programmation sur le courant de lecture mesuré sous une basse tension a également été analysé. Des structures de tests analogiques dédiés ont été conçues afin de contrôler l’amplitude du courant de programmation. Le contrôle du temps de programmation est quant à lui accompli par un système de détection de courant et de temporisation. Finalement, ces solutions sont validées par un démonstrateur d’une capacité de 1-kb conçu et fabriqué sur une technologie CMOS standard avancée 32nm. / Non-volatile one-time programmable memories are gaining an ever growing interest in embedded electronics. Chip ID, chip configuration or system repairing are among the numerous applications addressed by this type of semiconductor memories. In addition, the antifuse technology enables the storage of secured information with respect to cryptography or else. The thesis focuses on the understanding of ultrathin gate-oxide breakdown physics that is involved in the programming of antifuse bitcells. The integration of advanced programming and detection schemes is also tackled in this thesis. The breakdown mechanisms in the dielectric material SiO2 and high-K under a high electric field were studied. Dedicated experimental setups were needed in order to perform the characterization of antifuse bitcells under the conditions define in memory product. Typical time-to-breakdown values shorter than a micro second were identified. The latter measurements allowed the statistical study of dielectric breakdown and the modeling in a high voltage range, i.e. beyond the conventional range studied in reliability. The model presented in this PhD thesis enables the optimization of the antifuse bitcell sizes according to a targeted mean time-to- breakdown value. A particular mechanism leading to a high bulk current overshoot occuring during the programming operation was highlighted. The study of this phenomenon was achieved using electrical characterizations and simulations. The triggering of a parasitic P-N-P bipolar transistor localized in the antifuse bitcell appeared as a relevant hypothesis. The analysis of the impact of the programming conditions on the resulting read current measured under a low voltage was performed using analog test structures. The amplitude of the programming current was controlled in an augmented antifuse bitcell. The programming time is controlled by a programming detection system and a delay. Finally, these solutions are to be validated using a 1-kb demonstrator yet designed and fabricated in a logic 32-nm CMOS process.
|
Page generated in 0.0423 seconds