• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 38
  • 38
  • 15
  • 13
  • 12
  • 10
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The role of p53 in the drug resistance phenotype of childhood neuroblastoma

Xue, Chengyuan, School of Women?s & Children?s Health, UNSW January 2007 (has links)
The development of resistance to chemotherapeutic drugs is the main obstacle to the successful treatment of many cancers, including childhood neuroblastoma, the most common solid tumour of infants. One factor that may play a role in determining response of neuroblastoma tumours to therapeutic agents is the p53 tumour suppressor gene. A number of previous studies have suggested that this tumour suppressor protein is inactive in neuroblastoma due to its cytoplasmic sequestration. This thesis therefore has examined the functionality of p53 and its role in determining drug response of neuroblastoma cells. An initial study was undertaken that characterised an unusually broad multidrug resistance (MDR) phenotype of a neuroblastoma cell line (IMR/KAT100). The results demonstrated that the MDR phenotype of the IMR/KAT100 cells was associated with the acquisition of mutant p53. To explore the role of p53 in drug resistance further, p53-deficient variants in cell lines with wild-type p53 were generated by transduction of p53-suppressive constructs encoding either shRNA or a dominant-negative p53 mutant. Analysis of these cells indicated that: (i) in contrast to previous reports, wild-type p53 was fully functional in all neuroblastoma lines tested, as evidenced by its activation and nuclear translocation in response to DNA damage, transactivation of target genes and control of cell cycle checkpoints; (ii) inactivation of p53 in neuroblastoma cells resulted in establishment of an MDR phenotype; (iii) knockdown of mutant p53 did not revert the drug resistance phenotype, suggesting it is determined by loss of wild-type function rather than gain of mutant function; (iv) p53-dependent cell senescence, the primary response of S-type neuroblastoma cells to DNA damage, is replaced, after p53 inactivation, by mitotic catastrophe and subsequent apoptosis. In contrast to neuroblastoma, p53 suppression had no effect or increased drug susceptibility in several other tumour cell types, indicating the importance of tissue context for p53- mediated modulation of tumour cell sensitivity to treatment. Taken together, these data provide strong evidence for p53 having a role in mediating drug resistance in neuroblastoma and suggest that p53 status may be an important prognostic marker of treatment response in this disease.
32

The functional significance of an alternately spliced product of the HDM2 gene

Schmerr, Martin J. January 2007 (has links)
Thesis (Ph.D.)--Ohio University, March, 2007. / Title from PDF t.p. Includes bibliographical references.
33

Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo / Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating cells in vivo

Francoz, Sarah 02 June 2006 (has links)
The Mdm2 and Mdm4 oncoproteins are key negative regulators of the p53 tumor suppressor. However, their physiological contributions to the regulation of p53 stability and activity remain highly controversial. Here, we combined a p53 knock-in allele, in which p53 is silenced by a transcriptional stop element flanked by loxP sites, with the Mdm2- and Mdm4-null alleles. This approach allows Cre-mediated conditional p53 expression in tissues in vivo and cells in vitro lacking Mdm2, Mdm4, or both. Using this strategy, we show that Mdm2 and Mdm4 are essential in a nonredundant manner for preventing p53 activity in the same cell type (Mouse Embryonic Fibroblasts (MEFs), neuronal progenitor cells and postmitotic neurons) and irrespective of the proliferation/differentiation status of the cells. Although Mdm2 prevents accumulation of the p53 protein, Mdm4 contributes to the overall inhibition of p53 activity independent of Mdm2. We propose a model in which Mdm2 is critical for the regulation of p53 levels and Mdm4 is critical for the fine-tuning of p53 transcriptional activity, both proteins acting synergistically to keep p53 in check. Finally, we show that neither Mdm2 nor Mdm4 regulate cell cycle progression independently of its ability to modulate p53 function. / Doctorat en sciences, Spécialisation biologie moléculaire / info:eu-repo/semantics/nonPublished
34

Vanadate-induced cell cycle regulation and its signal transduction pathway

Zhang, Zhuo, January 2002 (has links)
Thesis (Ph. D.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains xii, 216 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
35

Computational studies on the identification and analyses of p53 cancer associated mutations

Cele, Nosipho Magnificat January 2017 (has links)
Submitted in the fulfillment of the requirement for the Degree of Master's in Chemistry, Durban University of Technology, 2017. / P53 is a tumour suppressor protein that is dysfunctional in most human cancer cells. Mutations in the p53 genes result in the expression of mutant proteins which accumulate to high levels in tumour cells. Several studies have shown that majority of the mutations are concentrated in the DNA-binding domain where they destabilize its conformation and eliminate the sequence- specific DNA-binding to abolish p53 transcription activities. Accordingly, this study involved an investigation of the effects of mutations associated with cancer, based on the framework of sequences and structures of p53 DNA-binding domains, analysed by SIFT, Pmut, I-mutant, MuStab, CUPSAT, EASY-MM and SDM servers. These analyses suggest that 156 mutations may be associated with cancer, and may result in protein malfunction, including the experimentally validated mutations. Thereafter, 54 mutations were further classified as disease- causing mutations and probably have a significant impact on the stability of the structure. The detailed stability analyses revealed that Val143Asp, Ala159Pro, Val197Pro, Tyr234Pro, Cys238Pro, Gly262Pro and Cys275Pro mutations caused the highest destabilization of the structure thus leading to malfunctioning of the protein. Additionally, the structural and functional consequences of the resulting highly destabilizing mutations were explored further using molecular docking and molecular dynamics simulations. Molecular docking results revealed that the p53 DNA-binding domain loses its stability and abrogates the specific DNA-binding as shown by a decrease in binding affinity characterized by the ZRANK scores. This result was confirmed by the residues Val143Asp, Ala159Pro, Val197Pro, Tyr234Pro and Cys238Pro p53-DNA mutant complexes inducing the loss of important hydrogen bonds, and introduced non-native hydrogen bonds between the two biomolecules. Furthermore, Molecular dynamics (MD) simulations of the experimental mutant forms showed that the structures of the p53 DNA-binding domains were more rigid comparing to the wild-type structure. The MD trajectories of Val134Ala, Arg213Gly and Gly245Ser DNA-binding domain mutants clearly revealed a loss of the flexibility and stability by the structures. This might affect the structural conformation and interfere with the interaction to DNA. Understanding the effects of mutations associated with cancer at a molecular level will be helpful in designing new therapeutics for cancer diseases. / M
36

Regulation of the tumor suppressor p53 by Mdm2 and Mdm4

Maetens, Marion M. 07 December 2007 (has links)
Mdm2 and Mdm4 are critical negative regulators of the p53 tumor suppressor. Mdm4-null mutants are severely anemic and exhibit impaired proliferation of the fetal liver erythroid lineage cells. This phenotype may indicate a cell-intrinsic function of Mdm4 in erythropoiesis. In contrast, red blood cell count was nearly normal in mice engineered to express low levels of Mdm2, suggesting that Mdm2 might be dispensable for red cell production. In the first part of the thesis, we further explore the tissue-specific functions of Mdm2 and Mdm4 in the erythroid lineage by crossing the conditional Mdm4 and Mdm2 alleles to an erythroid-specific-cre (EpoRGFP-Cre ) knock-in allele. Our data show that Mdm2 is required for rescuing erythroid progenitors from p53-mediated apoptosis during primitive erythropoiesis. In contrast, Mdm4 is only required for the high erythropoietic rate during embryonic definitive erythropoiesis. Thus, in this particular cellular context, interestingly, Mdm4 only contributes to p53 regulation at a specific phase of the differientation program.<p><p>Moreover, a large body of evidence indicates that aberrant expression of either MDM2 or MDM4 impairs p53 tumor suppression function and consequently favors tumor formation. Overexpression of MDM2 was observed in 10% of 8000 human cancers from various sites, including lung or stomach, and MDM4 was found amplified and/or overexpressed in 10-20% of over 800 diverse tumors including lung, colon, stomach and breast cancers. Remarkably, selective MDM4 amplification occurs in about 65% of human retinoblastomas. In contrast, MDM2 amplifications are relatively rare (about 5%) in retinoblastomas, indicating that depending on the tumor context (cell type, initiating oncogene, …), MDM4, rather than MDM2, overexpression might be selected for as a more efficient mean of suppression of p53 function. As part of a large effort to better understand why different cell types require distinct combinations of mutations to form tumours, we will examine the molecular basis for selective up-regulation of Mdm4 in retinoblastomas. In this context, we have successfully generated 2 conditional transgenic mouse lines expressing either mycMdm2 or mycMdm4 driven by the PCAGGs promoters in the ROSA26 locus. Since a cassette containing a floxed transcriptional stop element is inserted upstream of the transgenes, we can achieve tissue-specific expression and spatio-temporal regulation of the transgenes by using different Cre and CreER. By the use of N-terminal myc-tag fused with the transgenes, we are able to compare the expression levels of the transgenes. Finally, due to C-terminal IRES-GFP element, we can easily identify transgene expressing cells. One of our aims is to use this Mdm4 conditional transgenic mouse line as the first, non-chimeric, mouse model of retinoblastoma that can be used as an appropriate preclinical model to improve treatment of this disease.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
37

Modeling cancer predisposition: Profiling Li-Fraumeni syndrome patient-derived cell lines using bioinformatics and three-dimensional culture models

Phatak, Amruta Rajendra 07 October 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Although rare, classification of over 200 hereditary cancer susceptibility syndromes accounting for ~5-10% of cancer incidence has enabled the discovery and understanding of cancer predisposition genes that are also frequently mutated in sporadic cancers. The need to prevent or delay invasive cancer can partly be addressed by characterization of cells derived from healthy individuals predisposed to cancer due to inherited "single-hits" in genes in order to develop patient-derived samples as preclinical models for mechanistic in vitro studies. Here, we present microarray-based transcriptome profiling of Li-Fraumeni syndrome (LFS) patient-derived unaffected breast epithelial cells and their phenotypic characterization as in vitro three-dimensional (3D) models to test pharmacological agents. In this study, the epithelial cells derived from the unaffected breast tissue of a LFS patient were cultured and progressed from non-neoplastic to a malignant stage by successive immortalization and transformation steps followed by growth in athymic mice. These cell lines exhibited distinct transcriptomic profiles and were readily distinguishable based upon their gene expression patterns, growth characteristics in monolayer and in vitro 3D cultures. Transcriptional changes in the epithelial-to-mesenchymal transition gene signature contributed to the unique phenotypes observed in 3D culture for each cell line of the progression series; the fully transformed LFS cells exhibited invasive processes in 3D culture with disorganized morphologies due to cell-cell miscommunication, as seen in breast cancer. Bioinformatics analysis of the deregulated genes and pathways showed inherent differences between these cell lines and targets for pharmacological agents. After treatment with small molecule APR-246 that restores normal function to mutant p53, we observed that the neoplastic LFS cells had reduced malignant invasive structure formation from 73% to 9%, as well as an observance of an increase in formation of well-organized structures in 3D culture (from 27% to 91%) by stereomicroscopy and confocal microscopy. Therefore, the use of well-characterized and physiologically relevant preclinical models in conjunction with transcriptomic profiling of high-risk patient derived samples as a renewable laboratory resource can potentially guide the development of safer and more effective chemopreventive approaches.
38

Phospho-regulation and metastatic potential of Murine Double Minute 2

Batuello, Christopher N. 21 December 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Murine double minute (Mdm2) is a highly modified and multi-faceted protein that is overexpressed in numerous human malignancies. It engages in many cellular activities and is essential for development since deletion of mdm2 is lethal in early stages of embryonic development. The most studied function of Mdm2 is as a negative regulator of the tumor suppressor protein p53. Mdm2 achieves this regulation by binding to p53 and inhibiting p53 transcriptional activity. Mdm2 also functions as an E3 ubiquitin ligase that signals p53 for destruction by the proteasome. Interestingly recent evidence has shown that Mdm2 can also function as an E3 neddylating enzyme that can conjugate the ubiquitin-like molecule, nedd8, to p53. This modification results in inhibition of p53 activity, while maintaining p53 protein levels. While the signaling events that regulate Mdm2 E3 ubiquitin ligase activity have been extensively studied, what activates the neddylating activity of Mdm2 has remained elusive. My investigations have centered on understanding whether tyrosine kinase signaling could activate the neddylating activity of Mdm2. I have shown that c-Src, a non-receptor protein tyrosine kinase that is involved in a variety of cellular processes, phosphorylates Mdm2 on tyrosines 281 and 302. This phosphorylation event increases the half-life and neddylating activity of Mdm2 resulting in a neddylation dependent reduction of p53 transcriptional activity. Mdm2 also has many p53-independent cellular functions that are beginning to be linked to its role as an oncogene. There is an emerging role for Mdm2 in tumor metastasis. Metastasis is a process involving tumor cells migrating from a primary site to a distal site and is a major cause of morbidity and mortality in cancer patients. To date, the involvement of Mdm2 in breast cancer metastasis has only been correlative, with no in vivo model to definitively define a role for Mdm2. Here I have shown in vivo that Mdm2 enhances breast to lung metastasis through the up regulation of multiple angiogenic factors, including HIF-1 alpha and VEGF. Taken together my data provide novel insights into important p53-dependent and independent functions of Mdm2 that represent potential new avenues for therapeutic intervention.

Page generated in 0.0717 seconds