• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanistic Study of Nucleocytoplasmic Trafficking and Reversible Acetylation in Modulating the NRF2-Dependent Antioxidant Response

Sun, Zheng January 2008 (has links)
To maintain intracellular redox homeostasis, genes encoding many endogenous antioxidants and phase II detoxification enzymes are transcriptionally upregulated upon deleterious oxidative stress through the cis- antioxidant responsive elements (AREs) in their promoter regions. Nrf2 has emerged as the pivatol transcription factor responsible for ARE-dependent transcription, and has been shown to play critical roles in hepatotoxicity, chemical carcinogenesis, pulmonary inflammatory diseases, neurodegenerative diseases and aging. Therefore, understanding the molecular mechanism of the Nrf2-dependent cytoprotective system is important for development of drugs for therapeutic intervention.Nrf2 is targeted by Keap1 for ubiquitin-mediated degradation under basal conditions. Upon oxidative stress, distinct cysteine residues of Keap1 are alkylated, leading to inhibition of Keap1 and activation of Nrf2. However, it was not clear how Nrf2 is re-entered into the repression status when redox homeostasis is re-achieved. In this dissertation, we establish that the post-induction repression of Nrf2 is controlled by the nuclear export function of Keap1 in alliance with the cytoplasmic ubiquitination/ degradation machinery. We show that a nuclear export sequence (NES) in Keap1 is required for termination of Nrf2 signaling; ubiquitination of Nrf2 is carried out in the cytosol; Keap1 nuclear translocation is independent of Nrf2; and the Nrf2-Keap1 complex does not bind the ARE. Collectively, these results suggest that Keap1 translocates into the nucleus to dissociate Nrf2 from the ARE and mediates nuclear export of Nrf2 followed by ubiquitination and degradation of Nrf2 in the cytoplasm.In addition to Keap1-mediated negative regulation, we identified a novel positive regulatory mechanism of Nrf2 mediated by transcription co-activator p300/CBP. We show that p300/CBP directly binds and acetylates Nrf2 in response to oxidative stress. We have identified multiple acetylated lysine residues within the Nrf2 Neh1 DNA-binding domain. Combined lysine-to-arginine mutations on the acetylation sites, with no effects on Nrf2 protein stability, compromised the DNA-binding activity of Nrf2 in a promoter-specific manner both in vitro and in vivo. These findings demonstrated that acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 and established acetylation as a novel regulatory mechanism that functions in concert with Keap1-mediated ubiquitination in modulating the Nrf2-dependent antioxidant response.
2

REGULATION OF OXIDATIVE-STRESS-RESPONSIVE GENES: INVOLVEMENT OF CYP1A1 AND RELATIONSHIP WITH GLUTATHIONE AND APOPTOSIS

Dieter, Matthew Z. January 2000 (has links)
No description available.
3

Nuclear Factor (Erythroid 2-like) Factor 2 (Nrf2) as Cellular Protector in Bile Acid and Retinoid Toxicities

Tan, Kah Poh 26 February 2009 (has links)
Exposure to toxic bile acids (BA) and retinoic acids (RA) is implicated in toxicities related to excessive oxidative stress. This thesis examined roles and mechanisms of the oxidative stress-responsive nuclear factor (erythroid 2-like) factor 2 (Nrf2) in adaptive cell defense against BA and RA toxicities. Using liver cells and mouse models, many antioxidant proteins known to be Nrf2 target genes, particularly the rate-limiting enzyme for glutathione (GSH) biosynthesis, i.e., glutamate-cysteine ligase subunits (GCLM/GCLC), were induced by BA [lithocholic acid (LCA)] or RA (all-trans, 9-cis and 13-cis) treatment. Evidence for increased Nrf2 transactivation by LCA and all-trans-RA was exemplified in HepG2 by: (1) reduced constitutive and inducible expression of GCLM/GCLC upon Nrf2 silencing via small-interfering RNA; (2) increased inducible expression of GCLM/GCLC genes by Nrf2 overexpression, but overexpression of dominant-negative Nrf2 decreased it; (3) increased nuclear accumulation of Nrf2 as signature event of receptor activation; (4) enhanced Nrf2-dependent antioxidant-response-element (ARE) reporter activity as indicative of increased Nrf2 transactivation; and (5) increased Nrf2 occupancy to AREs of GCLM and GCLC. Additionally, in BA-treated HepG2 cells, we observed concomitant increases of many ATP-binding cassette (ABC) transporters (MRPs 1-5, MDR1 and BCRP) in parallel with increased cellular efflux. Nrf2 silencing in HepG2 cells decreased constitutive and inducible expression of MRP2, MRP3 and ABCG2. However, Nrf2-silenced mouse hepatoma cells, Hepa1c1c7, and Nrf2-/- mice had decreased constitutive and/or inducible expression of Mrps 1-4, suggesting species differences in Nrf2-dependent regulation of hepatic ABC transporters. Protection by Nrf2 against BA and RA toxicities was confirmed by observations that Nrf2 silencing increased cell susceptibility to BA- and RA-induced cell death. Moreover, Nrf2-/- mice suffered more severe liver injury than the wildtype. Increased GSH and efflux activity following increased GCLM/GCLC and ABC transporters, respectively, can mitigate LCA toxicity. Activation of MEK1-ERK1/2 MAPK was shown to primarily mediate Nrf2 transactivation and LCA-induced expression of antioxidant proteins and Nrf2-dependent and -independent ABC transporters. In conclusion, Nrf2 activation by BA and RA led to coordinated induction of antioxidant and ABC proteins, thereby counteracting resultant oxidative cytotoxicity. The potential of targeting Nrf2 in management of BA and RA toxicities merits further investigation.
4

Nuclear Factor (Erythroid 2-like) Factor 2 (Nrf2) as Cellular Protector in Bile Acid and Retinoid Toxicities

Tan, Kah Poh 26 February 2009 (has links)
Exposure to toxic bile acids (BA) and retinoic acids (RA) is implicated in toxicities related to excessive oxidative stress. This thesis examined roles and mechanisms of the oxidative stress-responsive nuclear factor (erythroid 2-like) factor 2 (Nrf2) in adaptive cell defense against BA and RA toxicities. Using liver cells and mouse models, many antioxidant proteins known to be Nrf2 target genes, particularly the rate-limiting enzyme for glutathione (GSH) biosynthesis, i.e., glutamate-cysteine ligase subunits (GCLM/GCLC), were induced by BA [lithocholic acid (LCA)] or RA (all-trans, 9-cis and 13-cis) treatment. Evidence for increased Nrf2 transactivation by LCA and all-trans-RA was exemplified in HepG2 by: (1) reduced constitutive and inducible expression of GCLM/GCLC upon Nrf2 silencing via small-interfering RNA; (2) increased inducible expression of GCLM/GCLC genes by Nrf2 overexpression, but overexpression of dominant-negative Nrf2 decreased it; (3) increased nuclear accumulation of Nrf2 as signature event of receptor activation; (4) enhanced Nrf2-dependent antioxidant-response-element (ARE) reporter activity as indicative of increased Nrf2 transactivation; and (5) increased Nrf2 occupancy to AREs of GCLM and GCLC. Additionally, in BA-treated HepG2 cells, we observed concomitant increases of many ATP-binding cassette (ABC) transporters (MRPs 1-5, MDR1 and BCRP) in parallel with increased cellular efflux. Nrf2 silencing in HepG2 cells decreased constitutive and inducible expression of MRP2, MRP3 and ABCG2. However, Nrf2-silenced mouse hepatoma cells, Hepa1c1c7, and Nrf2-/- mice had decreased constitutive and/or inducible expression of Mrps 1-4, suggesting species differences in Nrf2-dependent regulation of hepatic ABC transporters. Protection by Nrf2 against BA and RA toxicities was confirmed by observations that Nrf2 silencing increased cell susceptibility to BA- and RA-induced cell death. Moreover, Nrf2-/- mice suffered more severe liver injury than the wildtype. Increased GSH and efflux activity following increased GCLM/GCLC and ABC transporters, respectively, can mitigate LCA toxicity. Activation of MEK1-ERK1/2 MAPK was shown to primarily mediate Nrf2 transactivation and LCA-induced expression of antioxidant proteins and Nrf2-dependent and -independent ABC transporters. In conclusion, Nrf2 activation by BA and RA led to coordinated induction of antioxidant and ABC proteins, thereby counteracting resultant oxidative cytotoxicity. The potential of targeting Nrf2 in management of BA and RA toxicities merits further investigation.

Page generated in 0.5014 seconds