• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Learning representations in multi-relational graphs : algorithms and applications / Apprentissage de représentations en données multi-relationnelles : algorithmes et applications

García Durán, Alberto 06 April 2016 (has links)
Internet offre une énorme quantité d’informations à portée de main et dans une telle variété de sujets, que tout le monde est en mesure d’accéder à une énorme variété de connaissances. Une telle grande quantité d’information pourrait apporter un saut en avant dans de nombreux domaines (moteurs de recherche, réponses aux questions, tâches NLP liées) si elle est bien utilisée. De cette façon, un enjeu crucial de la communauté d’intelligence artificielle a été de recueillir, d’organiser et de faire un usage intelligent de cette quantité croissante de connaissances disponibles. Heureusement, depuis un certain temps déjà des efforts importants ont été faits dans la collecte et l’organisation des connaissances, et beaucoup d’informations structurées peuvent être trouvées dans des dépôts appelés Bases des Connaissances (BCs). Freebase, Entity Graph Facebook ou Knowledge Graph de Google sont de bons exemples de BCs. Un grand problème des BCs c’est qu’ils sont loin d’êtres complets. Par exemple, dans Freebase seulement environ 30% des gens ont des informations sur leur nationalité. Cette thèse présente plusieurs méthodes pour ajouter de nouveaux liens entre les entités existantes de la BC basée sur l’apprentissage des représentations qui optimisent une fonction d’énergie définie. Ces modèles peuvent également être utilisés pour attribuer des probabilités à triples extraites du Web. On propose également une nouvelle application pour faire usage de cette information structurée pour générer des informations non structurées (spécifiquement des questions en langage naturel). On pense par rapport à ce problème comme un modèle de traduction automatique, où on n’a pas de langage correct comme entrée, mais un langage structuré. Nous adaptons le RNN codeur-décodeur à ces paramètres pour rendre possible cette traduction. / Internet provides a huge amount of information at hand in such a variety of topics, that now everyone is able to access to any kind of knowledge. Such a big quantity of information could bring a leap forward in many areas if used properly. This way, a crucial challenge of the Artificial Intelligence community has been to gather, organize and make intelligent use of this growing amount of available knowledge. Fortunately, important efforts have been made in gathering and organizing knowledge for some time now, and a lot of structured information can be found in repositories called Knowledge Bases (KBs). A main issue with KBs is that they are far from being complete. This thesis proposes several methods to add new links between the existing entities of the KB based on the learning of representations that optimize some defined energy function. We also propose a novel application to make use of this structured information to generate questions in natural language.
2

Towards combining deep learning and statistical relational learning for reasoning on graphs

Qu, Meng 12 1900 (has links)
Cette thèse se focalise sur l'analyse de données structurées en graphes, un format de données répandu dans le monde réel. Le raisonnement dans ces données est un enjeu clé en apprentissage automatique, avec des applications allant de la classification de nœuds à la prédiction de liens. On distingue deux approches majeures pour le raisonnement dans les données en graphes : l'apprentissage relationnel statistique et l'apprentissage profond. L'apprentissage relationnel statistique construit des modèles graphiques probabilistes, efficaces pour capturer des dépendances complexes et intégrer des connaissances préexistantes, comme les règles logiques. Des méthodes notables incluent les réseaux logiques de Markov et les champs aléatoires conditionnels. L'apprentissage profond, quant à lui, se base sur l'apprentissage de représentations pertinentes des données observées pour une compréhension et un raisonnement rapides. Les réseaux neuronaux pour graphes (GNN) représentent un outil de pointe dans ce domaine. La combinaison de l'apprentissage relationnel statistique et de l'apprentissage profond offre une perspective enrichie sur le raisonnement, promettant un cadre plus robuste et efficace. Cette thèse explore cette combinaison, en développant des méthodes qui intègrent les deux approches. L'apprentissage profond renforce l'efficacité de l'apprentissage et de l'inférence dans l'apprentissage relationnel statistique, tandis que ce dernier affine les prédictions de l'apprentissage profond. Ce cadre intégré est appliqué à un éventail de tâches de raisonnement sur les graphes, démontrant son efficacité et ouvrant la voie à des recherches futures pour des cadres de raisonnement encore plus robustes. / This thesis centers on the analysis of graph-structured data, a ubiquitous data format in the real world. Reasoning within graph-structured data has long been a fundamental problem in machine learning, with applications spanning from node classification to link prediction. There are two principal approaches to tackle reasoning within graph-structured data: statistical relational learning and deep learning. Statistical relational learning techniques construct probabilistic graphical models based on observed data, excelling at capturing intricate dependencies of available evidence while accommodating prior knowledge, such as logic rules. Notable methods include Markov logic networks (MLNs) and conditional random fields (CRFs). In contrast, deep learning models harness the capability to learn meaningful representations from observed data, using these representations to rapidly comprehend and reason over the data. Graph neural networks (GNNs) have emerged as prominent tools in the realm of deep learning, achieving state-of-the-art results across a spectrum of tasks. Statistical relational learning and deep learning offer distinct perspectives on reasoning. Intuitively, combining these paradigms promises to create a more robust framework that inherits expressive power, efficiency, and the ability to model joint dependencies while simultaneously acquiring representations for more effective reasoning. In pursuit of this vision, this thesis explores the concept, developing methods that seamlessly integrate deep learning and statistical relational learning. Specifically, deep learning enhances the efficiency of learning and inference within statistical relational learning, while statistical relational learning, in turn, refines the predictions generated by deep learning to improve the accuracy. This integrated paradigm is applied across a diverse range of reasoning tasks on graphs. Empirical results demonstrate the effectiveness of this paradigm, encouraging further exploration to yield more robust reasoning frameworks.

Page generated in 0.1188 seconds