1 |
Résolution de l'équation du transport par une méthode d'éléments finis mixtes-hybrides et approximation par la diffusion de problèmes de transportCartier, Julien 25 April 2006 (has links) (PDF)
Cette thèse est consacrée à l'analyse mathématique, la résolution numérique et la modélisation des équations de transport. Dans un premier temps, on s'intéresse à l'approximation numérique de la solution des équations de transport par un schéma mixte-hybride. On introduit<br />et étudie une formulation mixte de l'équation du transport. L'étude du problème variationnel mixte est menée avant d'en présenter sa discrétisation et les propriétés fondamentales du schéma obtenu.<br />On s'attache en particulier a démontrer l'efficacité de la méthode dans la limite de diffusion (lorsque le libre parcours moyen des particules est petit devant les dimensions caractéristiques du domaine physique). On présente des cas tests académiques permettant de comparer notre schéma à d'autres méthodes dans des<br />configurations physiques variées et de valider notre schéma sur des cas tests analytiques. On s'applique à valider le schéma sur des maillages non structurés même très déformés tels que ceux issus de l'hydrodynamique lagrangienne. Une seconde partie de la thèse consiste à étudier deux problèmes de transport. Le premier problème est une étude de la diffusion due aux conditions aux limites dans un problème de transport entre deux plaques planes. L'autre problème consiste à modéliser et simuler les phénomènes de transfert radiatif dans le cadre industriel de la fusion par confinement inertiel.
|
Page generated in 0.0134 seconds