1 |
Study on Kashf al-ghumma al-jamisup(c) li-akhbar al-ummaAl-Askari, S. I. January 1984 (has links)
No description available.
|
2 |
The Wonders of Creation and the singularities of Ilkhanid painting : a study of the Qazwini, British Library Ms. Or. 14140Carboni, Stefano January 1992 (has links)
No description available.
|
3 |
A novel triangulation procedure for thinning hand-written textMelhi, M., Ipson, Stanley S., Booth, W. January 2001 (has links)
No / This paper describes a novel procedure for thinning binary text images by generating graphical representations of words within the image. A smoothed polygonal approximation of the boundaries of each word is first decomposed into a set of contiguous triangles. Each triangle is then classified into one of only three possible types from which a graph is generated that represents the topological features of the object. Joining graph points with straight lines generates a final polygon skeleton that, by construction, is one pixel wide and fully connected. Results of applying the procedure to thinning Arabic and English handwriting are presented. Comparisons of skeleton structure and execution time with results from alternative techniques are also presented. The procedure is considerably faster than the alternatives tested when the image resolution is greater than 600 dpi and the graphical representation often needed in subsequent recognition steps is available without further processing.
|
4 |
The Qur’ānic Sufi Hermeneutics of Shaykh Muṣṭafā’ al-‘Alāwī: A critical study of his Lubāb al- ‘Ilm Fī Sūrah al-NajmHendricks, Mogamat Mahgadien January 2018 (has links)
Magister Artium - MA / The main focus of this dissertation is a critical study of the Arabic text, titled:
Lubāb al ‘Ilm Fī Sūrah al-Najm (The Kernel of Knowledge in the Chapter of
the Star) by Shaykh Ahmad bin Muṣṭafā’ al-‘Alāwī.
Due to the lack of research on esoteric commentaries of the Qurʾān in the
English language, there is a need to embark upon an in-depth study of such
texts. An important work on Shaykh al-‘Alāwī in English is Martin Lings’ A
Sufi Saint of the Twentieth Century. This book is an excellent introduction to
the life, works and thought of Shaykh al-‘Alāwī, but it does not deal with a
specific text in any detail. Thus, the purpose of this dissertation is to examine
closely the above-mentioned text of Shaykh al-‘Alāwī as a sample of his
esoteric interpretation of the Qurʾān. For the purpose of this thesis, I shall
undertake a translation of his exegesis (tafsīr) on Sūrah al-Najm (the Chapter
of the Star). I will include with it explanatory notes and identification of key
quotations and sources. This sample from Shaykh al-‘Alāwī’s work will form
the basis of my critical analyses. It will also provide a means for comparison
with some of his other works, and with Qurʾānic commentaries of the same
genre by other Sufi scholars, both classical and modern. In this dissertation, I
also seek to offer some answers and proofs concerning the validity of the
existence of esoteric tafsīr and why it is needed. I will do this by examining
key verses in the Qur’ān and the Sunnah (traditions of the Prophet
Muḥammad).
The distinction between esoteric and exoteric interpretations of the
Qurʾān will also be dealt with in this dissertation. Although the emphasis will
be on the esoteric dimension, neither the esoteric nor the exoteric dimension
will be treated in a mutually exclusive way. Most Arabic commentaries on the
Qurʾān tend towards the exoteric and literal meanings of the text, but the
exoteric form also has an inner dimension which Shaykh al-‘Alāwī
demonstrates in his commentary on Sūrah al-Najm.
|
5 |
Word based off-line handwritten Arabic classification and recognition : design of automatic recognition system for large vocabulary offline handwritten Arabic words using machine learning approachesAlKhateeb, Jawad Hasan Yasin January 2010 (has links)
The design of a machine which reads unconstrained words still remains an unsolved problem. For example, automatic interpretation of handwritten documents by a computer is still under research. Most systems attempt to segment words into letters and read words one character at a time. However, segmenting handwritten words is very difficult. So to avoid this words are treated as a whole. This research investigates a number of features computed from whole words for the recognition of handwritten words in particular. Arabic text classification and recognition is a complicated process compared to Latin and Chinese text recognition systems. This is due to the nature cursiveness of Arabic text. The work presented in this thesis is proposed for word based recognition of handwritten Arabic scripts. This work is divided into three main stages to provide a recognition system. The first stage is the pre-processing, which applies efficient pre-processing methods which are essential for automatic recognition of handwritten documents. In this stage, techniques for detecting baseline and segmenting words in handwritten Arabic text are presented. Then connected components are extracted, and distances between different components are analyzed. The statistical distribution of these distances is then obtained to determine an optimal threshold for word segmentation. The second stage is feature extraction. This stage makes use of the normalized images to extract features that are essential in recognizing the images. Various method of feature extraction are implemented and examined. The third and final stage is the classification. Various classifiers are used for classification such as K nearest neighbour classifier (k-NN), neural network classifier (NN), Hidden Markov models (HMMs), and the Dynamic Bayesian Network (DBN). To test this concept, the particular pattern recognition problem studied is the classification of 32492 words using ii the IFN/ENIT database. The results were promising and very encouraging in terms of improved baseline detection and word segmentation for further recognition. Moreover, several feature subsets were examined and a best recognition performance of 81.5% is achieved.
|
6 |
Word based off-line handwritten Arabic classification and recognition. Design of automatic recognition system for large vocabulary offline handwritten Arabic words using machine learning approaches.AlKhateeb, Jawad H.Y. January 2010 (has links)
The design of a machine which reads unconstrained words still remains an unsolved problem. For example, automatic interpretation of handwritten documents by a computer is still under research. Most systems attempt to segment words into letters and read words one character at a time. However, segmenting handwritten words is very difficult. So to avoid this words are treated as a whole. This research investigates a number of features computed from whole words for the recognition of handwritten words in particular. Arabic text classification and recognition is a complicated process compared to Latin and Chinese text recognition systems. This is due to the nature cursiveness of Arabic text.
The work presented in this thesis is proposed for word based recognition of handwritten Arabic scripts. This work is divided into three main stages to provide a recognition system. The first stage is the pre-processing, which applies efficient pre-processing methods which are essential for automatic recognition of handwritten documents. In this stage, techniques for detecting baseline and segmenting words in handwritten Arabic text are presented. Then connected components are extracted, and distances between different components are analyzed. The statistical distribution of these distances is then obtained to determine an optimal threshold for word segmentation. The second stage is feature extraction. This stage makes use of the normalized images to extract features that are essential in recognizing the images. Various method of feature extraction are implemented and examined. The third and final stage is the classification. Various classifiers are used for classification such as K nearest neighbour classifier (k-NN), neural network classifier (NN), Hidden Markov models (HMMs), and the Dynamic Bayesian Network (DBN). To test this concept, the particular pattern recognition problem studied is the classification of 32492 words using
ii
the IFN/ENIT database. The results were promising and very encouraging in terms of improved baseline detection and word segmentation for further recognition. Moreover, several feature subsets were examined and a best recognition performance of 81.5% is achieved.
|
7 |
Recognition of off-line printed Arabic text using Hidden Markov Models.Al-Muhtaseb, Husni A., Mahmoud, Sabri A., Qahwaji, Rami S.R. January 2008 (has links)
yes / This paper describes a technique for automatic recognition of off-line printed Arabic text using Hidden Markov Models. In this work different sizes of overlapping and non-overlapping hierarchical windows are used to generate 16 features from each vertical sliding strip. Eight different Arabic fonts were used for testing (viz. Arial, Tahoma, Akhbar, Thuluth, Naskh, Simplified Arabic, Andalus, and Traditional Arabic). It was experimentally proven that different fonts have their highest recognition rates at different numbers of states (5 or 7) and codebook sizes (128 or 256).
Arabic text is cursive, and each character may have up to four different shapes based on its location in a word. This research work considered each shape as a different class, resulting in a total of 126 classes (compared to 28 Arabic letters). The achieved average recognition rates were between 98.08% and 99.89% for the eight experimental fonts.
The main contributions of this work are the novel hierarchical sliding window technique using only 16 features for each sliding window, considering each shape of Arabic characters as a separate class, bypassing the need for segmenting Arabic text, and its applicability to other languages.
|
8 |
Arabic Text Recognition and Machine TranslationAlkhoury, Ihab 13 July 2015 (has links)
[EN] Research on Arabic Handwritten Text Recognition (HTR) and Arabic-English Machine Translation (MT) has been usually approached as two independent areas of study. However, the idea of creating one system that combines both areas together, in order to generate English translation out of images containing Arabic text, is still a very challenging task. This process can be interpreted as the translation of Arabic images. In this thesis, we propose a system that recognizes Arabic handwritten text images, and translates the recognized text into English. This system is built from the combination of an HTR system and an MT system.
Regarding the HTR system, our work focuses on the use of Bernoulli Hidden Markov Models (BHMMs). BHMMs had proven to work very well with Latin script. Indeed, empirical results based on it were reported on well-known corpora, such as IAM and RIMES. In this thesis, these results are extended to Arabic script, in particular, to the well-known IfN/ENIT and NIST OpenHaRT databases for Arabic handwritten text.
The need for transcribing Arabic text is not only limited to handwritten text, but also to printed text. Arabic printed text might be considered as a simple form of handwritten text version. Thus, for this kind of text, we also propose Bernoulli HMMs. In addition, we propose to compare BHMMs with state-of-the-art technology based on neural networks.
A key idea that has proven to be very effective in this application of Bernoulli HMMs is the use of a sliding window of adequate width for feature extraction. This idea has allowed us to obtain very competitive results in the recognition of both Arabic handwriting and printed text. Indeed, a system based on it ranked first at the ICDAR 2011 Arabic recognition competition on the Arabic Printed Text Image (APTI) database. Moreover, this idea has been refined by using repositioning techniques for extracted windows, leading to further improvements in Arabic text recognition.
In the case of handwritten text, this refinement improved our system which ranked first at the ICFHR 2010 Arabic handwriting recognition competition on IfN/ENIT. In the case of printed text, this refinement led to an improved system which ranked second at the ICDAR 2013 Competition on Multi-font and Multi-size Digitally Represented Arabic Text on APTI. Furthermore, this refinement was used with neural networks-based technology, which led to state-of-the-art results.
For machine translation, the system was based on the combination of three state-of-the-art statistical models: the standard phrase-based models, the hierarchical phrase-based models, and the N-gram phrase-based models. This combination was done using the Recognizer Output Voting Error Reduction (ROVER) method. Finally, we propose three methods of combining HTR and MT to develop an Arabic image translation system. The system was evaluated on the NIST OpenHaRT database, where competitive results were obtained. / [ES] El reconocimiento de texto manuscrito (HTR) en árabe y la traducción automática (MT) del árabe al inglés se han tratado habitualmente como dos áreas de estudio independientes. De hecho, la idea de crear un sistema que combine las dos áreas, que directamente genere texto en inglés a partir de imágenes que contienen texto en árabe, sigue siendo una tarea difícil. Este proceso se puede interpretar como la traducción de imágenes de texto en árabe. En esta tesis, se propone un sistema que reconoce las imágenes de texto manuscrito en árabe, y que traduce el texto reconocido al inglés. Este sistema está construido a partir de la combinación de un sistema HTR y un sistema MT.
En cuanto al sistema HTR, nuestro trabajo se enfoca en el uso de los Bernoulli Hidden Markov Models (BHMMs). Los modelos BHMMs ya han sido probados anteriormente en tareas con alfabeto latino obteniendo buenos resultados. De hecho, existen resultados empíricos publicados usando corpus conocidos, tales como IAM o RIMES. En esta tesis, estos resultados se han extendido al texto manuscrito en árabe, en particular, a las bases de datos IfN/ENIT y NIST OpenHaRT.
En aplicaciones reales, la transcripción del texto en árabe no se limita únicamente al texto manuscrito, sino también al texto impreso. El texto impreso se puede interpretar como una forma simplificada de texto manuscrito. Por lo tanto, para este tipo de texto, también proponemos el uso de modelos BHMMs. Además, estos modelos se han comparado con tecnología del estado del arte basada en redes neuronales.
Una idea clave que ha demostrado ser muy eficaz en la aplicación de modelos BHMMs es el uso de una ventana deslizante (sliding window) de anchura adecuada durante la extracción de características. Esta idea ha permitido obtener resultados muy competitivos tanto en el reconocimiento de texto manuscrito en árabe como en el de texto impreso. De hecho, un sistema basado en este tipo de extracción de características quedó en la primera posición en el concurso ICDAR 2011 Arabic recognition competition usando la base de datos Arabic Printed Text Image (APTI). Además, esta idea se ha perfeccionado mediante el uso de técnicas de reposicionamiento aplicadas a las ventanas extraídas, dando lugar a nuevas mejoras en el reconocimiento de texto árabe.
En el caso de texto manuscrito, este refinamiento ha conseguido mejorar el sistema que ocupó el primer lugar en el concurso ICFHR 2010 Arabic handwriting recognition competition usando IfN/ENIT. En el caso del texto impreso, este refinamiento condujo a un sistema mejor que ocupó el segundo lugar en el concurso ICDAR 2013 Competition on Multi-font and Multi-size Digitally Represented Arabic Text en el que se usaba APTI. Por otro lado, esta técnica se ha evaluado también en tecnología basada en redes neuronales, lo que ha llevado a resultados del estado del arte.
Respecto a la traducción automática, el sistema se ha basado en la combinación de tres tipos de modelos estadísticos del estado del arte: los modelos standard phrase-based, los modelos hierarchical phrase-based y los modelos N-gram phrase-based. Esta combinación se hizo utilizando el método Recognizer Output Voting Error Reduction (ROVER). Por último, se han propuesto tres métodos para combinar los sistemas HTR y MT con el fin de desarrollar un sistema de traducción de imágenes de texto árabe a inglés. El sistema se ha evaluado sobre la base de datos NIST OpenHaRT, donde se han obtenido resultados competitivos. / [CA] El reconeixement de text manuscrit (HTR) en àrab i la traducció automàtica (MT) de l'àrab a l'anglès s'han tractat habitualment com dues àrees d'estudi independents. De fet, la idea de crear un sistema que combine les dues àrees, que directament genere text en anglès a partir d'imatges que contenen text en àrab, continua sent una tasca difícil. Aquest procés es pot interpretar com la traducció d'imatges de text en àrab. En aquesta tesi, es proposa un sistema que reconeix les imatges de text manuscrit en àrab, i que tradueix el text reconegut a l'anglès. Aquest sistema està construït a partir de la combinació d'un sistema HTR i d'un sistema MT.
Pel que fa al sistema HTR, el nostre treball s'enfoca en l'ús dels Bernoulli Hidden Markov Models (BHMMs). Els models BHMMs ja han estat provats anteriorment en tasques amb alfabet llatí obtenint bons resultats. De fet, existeixen resultats empírics publicats emprant corpus coneguts, tals com IAM o RIMES. En aquesta tesi, aquests resultats s'han estès a la escriptura manuscrita en àrab, en particular, a les bases de dades IfN/ENIT i NIST OpenHaRT.
En aplicacions reals, la transcripció de text en àrab no es limita únicament al text manuscrit, sinó també al text imprès. El text imprès es pot interpretar com una forma simplificada de text manuscrit. Per tant, per a aquest tipus de text, també proposem l'ús de models BHMMs. A més a més, aquests models s'han comparat amb tecnologia de l'estat de l'art basada en xarxes neuronals.
Una idea clau que ha demostrat ser molt eficaç en l'aplicació de models BHMMs és l'ús d'una finestra lliscant (sliding window) d'amplària adequada durant l'extracció de característiques. Aquesta idea ha permès obtenir resultats molt competitius tant en el reconeixement de text àrab manuscrit com en el de text imprès. De fet, un sistema basat en aquest tipus d'extracció de característiques va quedar en primera posició en el concurs ICDAR 2011 Arabic recognition competition emprant la base de dades Arabic Printed Text Image (APTI).
A més a més, aquesta idea s'ha perfeccionat mitjançant l'ús de tècniques de reposicionament aplicades a les finestres extretes, donant lloc a noves millores en el reconeixement de text en àrab. En el cas de text manuscrit, aquest refinament ha aconseguit millorar el sistema que va ocupar el primer lloc en el concurs ICFHR 2010 Arabic handwriting recognition competition usant IfN/ENIT. En el cas del text imprès, aquest refinament va conduir a un sistema millor que va ocupar el segon lloc en el concurs ICDAR 2013 Competition on Multi-font and Multi-size Digitally Represented Arabic Text en el qual s'usava APTI. D'altra banda, aquesta tècnica s'ha avaluat també en tecnologia basada en xarxes neuronals, el que ha portat a resultats de l'estat de l'art.
Respecte a la traducció automàtica, el sistema s'ha basat en la combinació de tres tipus de models estadístics de l'estat de l'art: els models standard phrase-based, els models hierarchical phrase-based i els models N-gram phrase-based. Aquesta combinació es va fer utilitzant el mètode Recognizer Output Voting Errada Reduction (ROVER). Finalment, s'han proposat tres mètodes per combinar els sistemes HTR i MT amb la finalitat de desenvolupar un sistema de traducció d'imatges de text àrab a anglès. El sistema s'ha avaluat sobre la base de dades NIST OpenHaRT, on s'han obtingut resultats competitius. / Alkhoury, I. (2015). Arabic Text Recognition and Machine Translation [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/53029
|
9 |
Arabic text recognition of printed manuscripts : efficient recognition of off-line printed Arabic text using Hidden Markov Models, Bigram Statistical Language Model, and post-processingAl-Muhtaseb, Husni Abdulghani January 2010 (has links)
Arabic text recognition was not researched as thoroughly as other natural languages. The need for automatic Arabic text recognition is clear. In addition to the traditional applications like postal address reading, check verification in banks, and office automation, there is a large interest in searching scanned documents that are available on the internet and for searching handwritten manuscripts. Other possible applications are building digital libraries, recognizing text on digitized maps, recognizing vehicle license plates, using it as first phase in text readers for visually impaired people and understanding filled forms. This research work aims to contribute to the current research in the field of optical character recognition (OCR) of printed Arabic text by developing novel techniques and schemes to advance the performance of the state of the art Arabic OCR systems. Statistical and analytical analysis for Arabic Text was carried out to estimate the probabilities of occurrences of Arabic character for use with Hidden Markov models (HMM) and other techniques. Since there is no publicly available dataset for printed Arabic text for recognition purposes it was decided to create one. In addition, a minimal Arabic script is proposed. The proposed script contains all basic shapes of Arabic letters. The script provides efficient representation for Arabic text in terms of effort and time. Based on the success of using HMM for speech and text recognition, the use of HMM for the automatic recognition of Arabic text was investigated. The HMM technique adapts to noise and font variations and does not require word or character segmentation of Arabic line images. In the feature extraction phase, experiments were conducted with a number of different features to investigate their suitability for HMM. Finally, a novel set of features, which resulted in high recognition rates for different fonts, was selected. The developed techniques do not need word or character segmentation before the classification phase as segmentation is a byproduct of recognition. This seems to be the most advantageous feature of using HMM for Arabic text as segmentation tends to produce errors which are usually propagated to the classification phase. Eight different Arabic fonts were used in the classification phase. The recognition rates were in the range from 98% to 99.9% depending on the used fonts. As far as we know, these are new results in their context. Moreover, the proposed technique could be used for other languages. A proof-of-concept experiment was conducted on English characters with a recognition rate of 98.9% using the same HMM setup. The same techniques where conducted on Bangla characters with a recognition rate above 95%. Moreover, the recognition of printed Arabic text with multi-fonts was also conducted using the same technique. Fonts were categorized into different groups. New high recognition results were achieved. To enhance the recognition rate further, a post-processing module was developed to correct the OCR output through character level post-processing and word level post-processing. The use of this module increased the accuracy of the recognition rate by more than 1%.
|
10 |
Embedded Arabic text detection and recognition in videos / Détection et reconnaissance du texte arabe incrusté dans les vidéosYousfi, Sonia 06 July 2016 (has links)
Cette thèse s'intéresse à la détection et la reconnaissance du texte arabe incrusté dans les vidéos. Dans ce contexte, nous proposons différents prototypes de détection et d'OCR vidéo (Optical Character Recognition) qui sont robustes à la complexité du texte arabe (différentes échelles, tailles, polices, etc.) ainsi qu'aux différents défis liés à l'environnement vidéo et aux conditions d'acquisitions (variabilité du fond, luminosité, contraste, faible résolution, etc.). Nous introduisons différents détecteurs de texte arabe qui se basent sur l'apprentissage artificiel sans aucun prétraitement. Les détecteurs se basent sur des Réseaux de Neurones à Convolution (ConvNet) ainsi que sur des schémas de boosting pour apprendre la sélection des caractéristiques textuelles manuellement conçus. Quant à notre méthodologie d'OCR, elle se passe de la segmentation en traitant chaque image de texte en tant que séquence de caractéristiques grâce à un processus de scanning. Contrairement aux méthodes existantes qui se basent sur des caractéristiques manuellement conçues, nous proposons des représentations pertinentes apprises automatiquement à partir des données. Nous utilisons différents modèles d'apprentissage profond, regroupant des Auto-Encodeurs, des ConvNets et un modèle d'apprentissage non-supervisé, qui génèrent automatiquement ces caractéristiques. Chaque modèle résulte en un système d'OCR bien spécifique. Le processus de reconnaissance se base sur une approche connexionniste récurrente pour l'apprentissage de l'étiquetage des séquences de caractéristiques sans aucune segmentation préalable. Nos modèles d'OCR proposés sont comparés à d'autres modèles qui se basent sur des caractéristiques manuellement conçues. Nous proposons, en outre, d'intégrer des modèles de langage (LM) arabes afin d'améliorer les résultats de reconnaissance. Nous introduisons différents LMs à base des Réseaux de Neurones Récurrents capables d'apprendre des longues interdépendances linguistiques. Nous proposons un schéma de décodage conjoint qui intègre les inférences du LM en parallèle avec celles de l'OCR tout en introduisant un ensemble d’hyper-paramètres afin d'améliorer la reconnaissance et réduire le temps de réponse. Afin de surpasser le manque de corpus textuels arabes issus de contenus multimédia, nous mettons au point de nouveaux corpus manuellement annotés à partir des flux TV arabes. Le corpus conçu pour l'OCR, nommé ALIF et composée de 6,532 images de texte annotées, a été publié a des fins de recherche. Nos systèmes ont été développés et évalués sur ces corpus. L’étude des résultats a permis de valider nos approches et de montrer leurs efficacité et généricité avec plus de 97% en taux de détection, 88.63% en taux de reconnaissance mots sur le corpus ALIF dépassant ainsi un des systèmes d'OCR commerciaux les mieux connus par 36 points. / This thesis focuses on Arabic embedded text detection and recognition in videos. Different approaches robust to Arabic text variability (fonts, scales, sizes, etc.) as well as to environmental and acquisition condition challenges (contrasts, degradation, complex background, etc.) are proposed. We introduce different machine learning-based solutions for robust text detection without relying on any pre-processing. The first method is based on Convolutional Neural Networks (ConvNet) while the others use a specific boosting cascade to select relevant hand-crafted text features. For the text recognition, our methodology is segmentation-free. Text images are transformed into sequences of features using a multi-scale scanning scheme. Standing out from the dominant methodology of hand-crafted features, we propose to learn relevant text representations from data using different deep learning methods, namely Deep Auto-Encoders, ConvNets and unsupervised learning models. Each one leads to a specific OCR (Optical Character Recognition) solution. Sequence labeling is performed without any prior segmentation using a recurrent connectionist learning model. Proposed solutions are compared to other methods based on non-connectionist and hand-crafted features. In addition, we propose to enhance the recognition results using Recurrent Neural Network-based language models that are able to capture long-range linguistic dependencies. Both OCR and language model probabilities are incorporated in a joint decoding scheme where additional hyper-parameters are introduced to boost recognition results and reduce the response time. Given the lack of public multimedia Arabic datasets, we propose novel annotated datasets issued from Arabic videos. The OCR dataset, called ALIF, is publicly available for research purposes. As the best of our knowledge, it is first public dataset dedicated for Arabic video OCR. Our proposed solutions were extensively evaluated. Obtained results highlight the genericity and the efficiency of our approaches, reaching a word recognition rate of 88.63% on the ALIF dataset and outperforming well-known commercial OCR engine by more than 36%.
|
Page generated in 0.0723 seconds