• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 40
  • 33
  • 33
  • 12
  • 12
  • 10
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The petrology, geochemistry and geochronology of the felsic alkaline suite of the eastern Yilgarn Block, Western Australia / Geoffrey I. Johnson

Johnson, Geoffrey I. (Geoffrey Ian) January 1991 (has links)
Typescript (Photocopy) / Includes copies of 4 papers by the author as appendix 4 (v. 1) / Errata slip inserted / Bibliography: leaves 170-192 (v. 1) / 2 v. : ill., maps ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--Dept. of Geology and Geophysics, University of Adelaide, 1992
32

Geochemistry of the Neoarchean mafic volcanic and intrusive rocks in the Kalgoorlie Terrane, eastern Yilgarn, Western Australia : implications for geodynamic setting

Said, Nuru January 2009 (has links)
[Truncated abstract] The Neoarchean (2800 to 2600 Ma) Eastern Goldfields Superterrane (EGST) comprises elongated belts of deformed and metamorphosed volcanic and sedimentary rocks intruded by granitoids. The Superterrane is made up of five distinct tectonostratigraphic terranes. From west to east these are the Kalgoorlie, Gindalbie, Kurnalpi, Laverton and Duketon Terranes. The Kalgoorlie Terrane is characterised by 2720 to 2680 Ma marine mafic-ultramafic volcanic successions interlayered with, and overlain by, 2710 to 2660 Ma dominantly trondhjemite-tonalite-dacite (TTD) dacititic volcaniclastic rocks (Black Flag Group). The adjacent Gindalbie and Kurnalpi terranes are characterised by 2720 to 2680 Ma calc-alkaline volcanic successions representing oceanic island arcs. To the west of the EGST, the Youanmi Terrane is characterised by older, dominantly 3000 to 2900 Ma greenstone rocks and complex granitoid batholiths derived from older crustal sources. The southern Kalgoorlie Terrane comprises five elongate NNW-trending tectono-stratigraphic domains. Three principal marine komatiitic to basaltic suites, collectively referred to as the Kambalda Sequence, are present, including the wellpreserved massive to pillowed Lower and Upper Basalt Sequences, separated by the Komatiite Unit, as well as numerous dyke suites. The Lower Basalt Sequence comprises the Woolyeenyer Formation, Lunnon, Wongi, Scotia, Missouri Basalts and Burbanks and Penneshaw Formations, whereas the Upper Basalt Sequence contains the Paringa, Coolgardie, Big Dick, Devon Consols, Bent Tree, and Victorious basalts. ... Instead, the data suggest that discrete PGE-bearing phase (s) fractionated from the basaltic magmas. Such phases could be platinum group minerals (PGM; e.g. laurite) and/or alloys, or discrete PGE-rich nuggets. In summary, data on the three magmatic sequences record decompression melting of three distinct mantle sources: (1) long-term depleted asthenosphere for prevalent depleted tholeiitic and komatiitic basalts, and komatiites; (2) long-term enriched asthenosphere for Paringa Basalts and similarly enriched rocks; and (3) shortterm enriched continental lithospheric mantle (CLM) for HREE and Al-depleted dykes. Some of these rocks were contaminated by TTD-type melts. Taken with the existing geophysical and xenocrystic zircon data, the most straightforward interpretation is eruption of a zoned mantle plume at the margin of rifted continental lithosphere. The Kalgoorlie Terrane extensional basin was subsequently tectonically juxtaposed with the adjacent arc-like Gindalbie and Kurnalpi Terranes at approximately 2660 Ma at the start of orogeny in a Cordilleran-style orogen to form the EGST. Collectively, uncontaminated basalts have Nb/Th of 8-16, compared to 8-12 reported for the Lunnon basalts in a previous study. To a first approximation these asthenosphere melts are complementary to average Archean upper continental crust with Nb/Th =2, consistent with early growth of large volumes of continental crust rather than models of steady progressive growth.
33

The interplay between physical and chemical processes in the formation of world-class orogenic gold deposits in the Eastern Goldfields Province, Western Australia

Hodkiewicz, Paul January 2003 (has links)
[Formulae and special characters can only be approximated here. Please see the pdf version of the abstract for an accurate reproduction.] The formation of world-class Archean orogenic gold deposits in the Eastern Goldfields Province of Western Australia was the result of a critical combination of physical and chemical processes that modified a single and widespread ore-fluid along fluid pathways and at the sites of gold deposition. Increased gold endowment in these deposits is associated with efficient regional-scale fluid focusing mechanisms and the influence of multiple ore-depositional processes at the deposit-scale. Measurement of the complexity of geologic features, as displayed in high-quality geologic maps of uniform data density, can be used to highlight areas that influence regional-scale hydrothermal fluid flow. Useful measurements of geological complexity include fractal dimensions of map patterns, density and orientation of faults and lithologic contacts, and proportions of rock types. Fractal dimensions of map patterns of lithologic contacts and faults highlight complexity gradients. Steep complexity gradients, between domains of high and low fractal dimensions within a greenstone belt, correspond to district-scale regions that have the potential to focus the flow of large volumes of hydrothermal fluid, which is critical for the formation of significant orogenic gold mineralization. Steep complexity gradients commonly occur in greenstone belts where thick sedimentary units overly more complex patterns of lithologic contacts, associated with mafic intrusive and mafic volcanic units. The sedimentary units in these areas potentially acted as seals to the hydrothermal Mineral Systems, which resulted in fluid-pressure gradients and increased fluid flow. The largest gold deposits in the Kalgoorlie Terrane and the Laverton Tectonic Zone occur at steep complexity gradients adjacent to thick sedimentary units, indicating the significance of these structural settings to gold endowment. Complexity gradients, as displayed in surface map patterns, are an indication of three-dimensional connectivity along fluid pathways, between fluid source areas and deposit locations. Systematic changes in the orientation of crustal-scale shear zones are also significant and measurable map features. The largest gold deposits along the Bardoc Tectonic Zone and Boulder-Lefroy Shear Zone, in the Eastern Goldfields Province, occur where there are counter-clockwise changes in shear zone orientation, compared to the average orientation of the shear zone along its entire length. Sinistral movement along these shear zones resulted in the formation of district-scale dilational jogs and focused hydrothermal fluid-flow at the Golden Mile, New Celebration and Victory-Defiance deposits. Faults and lithologic contacts are the dominant fluid pathways in orogenic gold Mineral Systems, and measurements of the density of faults and contacts are also a method of quantifying the complexity of geologic map patterns on high-quality maps. Significantly higher densities of pathways in areas surrounding larger gold deposits are measurable within 20- and 5-kilometer search radii around them. Large variations in the sulfur isotopic composition of ore-related pyrites in orogenic gold deposits in the Eastern Goldfields Province are the result of different golddepositional mechanisms and the in-situ oxidation of a primary ore fluid in specific structural settings. Phase separation and wall-rock carbonation are potentially the most common mechanisms of ore-fluid oxidation and gold precipitation. The influence of multiple gold-depositional mechanisms increases the potential for significant ore-fluid oxidation, and more importantly, provides an effective means of increasing gold endowment. This explains the occurrence of negative δ34S values in ore-related pyrites in some world-class orogenic gold deposits. Sulfur isotopic compositions alone cannot uniquely define potential gold endowment. However, in combination with structural, hydrothermal alteration and fluid inclusion studies that also seek to identify multiple ore-forming processes, they can be a useful indicator. The structural setting of a deposit is also a potentially important factor controlling ore-fluid oxidation and the distribution of δ34S values in ore-related pyrites. At Victory-Defiance, the occurrence of negative δ34S(py) values in gently-dipping dilational structures, compared to more positive δ34S(py) values in steeply-dipping compressional structures, is potentially associated with different gold-depositional mechanisms that developed as a result of fluid-pressure fluctuations during different stages of the fault-valve cycle. During the pre-failure stage, when fluids are discharging from faults, fluid-rock interaction is the dominant gold-depositional mechanism. Phase separation and back-mixing of modified ore-fluid components are dominant during and immediately after faulting. Under appropriate conditions, any, or all, of these three mechanisms can oxidize orogenic gold fluids and cause gold deposition. The influence of multiple gold-depositional mechanisms during fault-valve cycles at dilational jogs, where fluid pressure fluctuations are interpreted to be most severe, can potentially explain both the large gold endowment of the giant to world-class Golden Mile, New Celebration and Victory-Defiance deposits along the Boulder-Lefroy Shear Zone, and the presence of gold-related pyrites with negative δ34S values in these deposits. This study highlights the interplay that exists between physical and chemical processes in orogenic gold Mineral Systems, during the transport of ore fluids in pathways from original fluid reservoirs to deposit sites. Potentially, a single and widespread orogenic ore-fluid could become oxidized, and lead to the formation of ore-related sulfides with variable sulfur isotopic compositions, depending on the nature and orientation of major fluid pathways, the nature of wall-rocks through which it circulates, and the precise ore-depositional processes that develop during fault-valve cycles.
34

The timing and source of gold-bearing fluids in the Laverton Greenstone Belt, Yilgarn Craton, with emphasis on the Wallaby gold deposit

Salier, Brock Peter January 2004 (has links)
[Truncated abstract] The Laverton Greenstone Belt (LGB), located in the northeastern part of the Eastern Goldfields Province (EGP) of the Yilgarn Craton, Western Australia, has a total contained gold endowment of over 690t. An important feature of the gold deposits in the LGB is their close spatial association with granitoids, with many gold deposits located adjacent to, or hosted by, granitoids. Recently-proposed genetic models for Archaean orogenic gold deposits have emphasised the role of granitoids in the formation of ore-deposits, but differ significantly in the nature of that role. Some models suggest that the granitoids are a source of ore-fluids and solutes, whereas others suggest that granitoids exert an important structural control on gold mineralisation. Such competing genetic models for gold mineralisation variably propose either a proximal-magmatic or distal-metamorphic, or less commonly distal-magmatic, source for goldbearing fluids, or mixing of fluids from multiple sources. Isotope geochemistry and geochronological studies are used to constrain the source and timing of auriferous fluids at nine gold deposits in the LGB in an attempt to differentiate between conflicting genetic models. To overcome the lack of detailed deposit-scale geological constraints inherent to any regional study, hypotheses generated from regional datasets are tested in a detailed case-study of the Wallaby gold deposit. The Pb-isotope compositions of ore-related sulphides from deposits in the LGB plot along the line representing crustal-Pb in the Norseman-Wiluna Belt of the EGP, with individual deposits clustering with other nearby deposits based on their geographic location. This trend is similar to that recorded in the Kalgoorlie-Norseman region in the southern EGP, and is consistent with a basement Pb reservoir for gold-bearing fluids. As such, data are consistent with a similar fluid source for all gold deposits. The Nd and Sr isotopic composition of goldrelated scheelite in the LGB clusters very tightly. The inferred ore-fluid composition has a slightly positive εNd, similar to ore fluids at other gold deposits in the EGP for which a proximal magmatic source is highly improbable. As such, Sr and Nd data are consistent with a similar fluid source for the gold deposits analysed in the LGB, but cannot unequivocally define that source. The median S, C and O isotopic compositions of ore minerals from all nine different gold deposits studied in the LGB fall in a very narrow range
35

Les changements géodynamiques à la transition Archéen-Protérozoïque : étude des granitoïdes de la marge Nord du craton du Kaapvaal (Afrique du Sud) / Geodynamic changes at the Archaean-Proterozoic transition : study of the granitoids from the northern part of the Kaapvaal craton (South Africa)

Laurent, Oscar 10 December 2012 (has links)
La composition chimique de la croûte continentale a significativement évolué à la transition Archéen-Protérozoïque (3000–2500 Ma), témoignant de changements géodynamiques majeurs à cette époque. Afin d’étudier l’expression et les origines de ces changements, qui sont encore mal contraints, j’ai étudié une diversité de granitoïdes qui se sont mis en place dans cette gamme d’âges à la marge Nord du craton du Kaapvaal, en Afrique du Sud. Ce travail a permis de préciser la typologie et l’origine des granitoïdes tardi-archéens ; ceux-ci peuvent être classés dans trois grands groupes : (1) Les sanukitoïdes, représentés en Afrique du Sud par le pluton de Bulai, sont des magmas dérivant de l’interaction entre une péridotite mantellique et un composant riche en éléments incompatibles (TTG, liquide issu de la fusion de sédiments, et, plus rarement, fluide aqueux). Les sanukitoïdes peuvent être classés en deux groupes distincts, selon les mécanismes de cette hybridation : les low-Ti sanukitoids proviennent d’une simple hybridation du liquide silicaté avec la péridotite, alors que les high-Ti sanukitoids sont issus de la fusion d’un assemblage métasomatique à amphibole et phlogopite, résultant de ces interactions. Enfin, les mécanismes de différenciation des suites sanukitoïdes au niveau de la croûte sont contrôlées par des mécanismes de cristallisation fractionnée ou (moins vraisemblablement) de fusion partielle. (2) Les sanukitoïdes « marginaux », représentés dans le craton du Kaapvaal par les plutons de Mashashane, Matlala, Matok et Moletsi, sont des granitoïdes résultant de l’interaction entre des sanukitoïdes et des magmas provenant de la fusion de croûte préexistante. Etant donné la large gamme de sources possibles (TTG, métasédiments, roches mafiques) d’un craton à l’autre, ce groupe est extrêmement diversifié. Leurs mécanismes de différenciation sont contrôlés par la cristallisation fractionnée. (3) Certains granites, tels que le batholite de Turfloop en Afrique du Sud, sont directement issus de la fusion de lithologies crustales (TTG, métasédiments et amphibolites). Au sein du craton du Kaapvaal, l’évolution spatio-temporelle du magmatisme tardi-archéen suit un schéma très caractéristique : les TTG se mettent en place entre ~3300 et ~2800 Ma, puis laissent la place à la genèse de l’ensemble des granitoïdes présentés ci-dessus, qui se déroule entre 2780 et 2590 Ma. Cette séquence d’évènements est reproduite au sein de tous les cratons du monde à la fin de l’Archéen. Elle témoigne de l’avènement des processus de recyclage crustal, puisque, par opposition aux TTG archéennes qui dérivent de métabasaltes juvéniles, les magmas tardi-archéens sont issus à la fois de la différenciation intracrustale et de l’interaction entre une péridotite et du matériel continental introduit dans le manteau. Cette dualité de processus pétrogénétiques est aussi très typique des épisodes magmatiques qui ont lieu à la fin des cycles de subduction-collision post-archéens. Ainsi, l’évolution de la composition des granitoïdes entre 3000 et 2500 Ma traduit vraisemblablement l’initiation d’une forme de tectonique des plaques proche du régime actuel. Celle-ci serait liée au refroidissement planétaire global, qui a probablement entraîné un « effet de seuil » dans l’évolution de l’épaisseur de la croûte océanique ainsi que la rhéologie et le volume de la croûte continentale, permettant ainsi à la subduction et à la collision de ne devenir thermo-mécaniquement stables qu’à partir de la fin de l’Archéen. / The chemical composition of continental crust significantly evolved though time, in particular at the Archaean-Proterozoic transition (3000–2500 Ma), which witnesses major geodynamic changes at that time. The nature and origin of these changes are poorly constrained so far. To better constrain them, I studied a range of granitoid emplaced at that time at the northern margin of the Kaapvaal Craton, in South Africa. In the light of my work, the typology and origin of this magmatism has been reappraised; in particular, the late-archaean granitoids can be split in three different groups : (1) Sanukitoids are represented in South Africa by the Bulai pluton. They are hybrid magmas derived from interaction between mantle peridotite and a component rich in incompatible elements (generally a melt derived from either metabasalts or metasediments). They can be separated in two groups, depending on the hybridation process: low-Ti sanukitoids derive from one-step interaction of silicate melt with peridotite, while high-Ti sanukitoids result from melting of a metasomatic, amphibole- and phlogopite-bearing assemblage equilibrated during the interactions. Finally, the differentiation mechanisms of sanukitoid suites at crustal levels are mainly controlled by fractional crystallization or, less likely, partial melting. (2) « Marginal » sanukitoids, as represented in the Kaapvaal craton by Mashashane, Matlala, Matok and Moletsi plutons, are produced by interactions between sanukitoids and crust-derived melts. Because the source of the latter can be very different from a craton to another, this group of granitoids is extremely diverse. Their magmatic evolution is mostly controlled by fractional crystallization, such as sanukitoids. (3) Some granites, such as those from the Turfloop batholith in South Africa, directly derive from melting of older crustallithologies (TTGs, metasediments, mafic rocks). The evolution of late-archaean magmatism in the Kaapvaal craton follows a very typical sequence: genesis of TTG took place between ~3300 and ~2800 Ma, and give way to the emplacement of all granitoid types presented above, which occurs in a short time span between 2780 and 2590 Ma. This succession of events is identical within every craton worldwide at the end of the Archaean. It witnesses the advent of crust recycling processes, as late-archaean magmas derive from both intracrustal differentiation and interactions between peridotite and continental material introduced within the mantle. This sharply contrasts with the genesis of TTG through melting of juvenile metabasalts only. This duality of petrogenetic processes is also typical of magmatic events in late- to post-orogenic settings, at the end of present-day subduction-collision cycles. As a result, the evolution of the crust composition between 3000 and 2500 Ma likely reflects the initiation of modernstyle plate tectonics. This would be the consequence of global cooling of Earth, which has induced a threshold effect in parameters such as (1) the thickness of oceanic crust and (2) the rheology and volume of continental crust. Indeed, these parameters exert a primary control on the thermo-mechanical stability of subduction and collision, and both became possible at the end of the Archaean only.
36

Migmatization and volcanic petrogenesis in the La Grande greenstone belt, Quebec

Liu, Mian. January 1985 (has links)
No description available.
37

Geology, geochemistry and hydrothermal alteration at the Phelps Dodge massive sulfide deposit, Matagami, Québec

Kranidiotis, Prokopis. January 1985 (has links)
No description available.
38

始生代グリ-ンストン帯の形成過程

星野, 光雄, 伊藤, 正裕, 杉谷, 健一郎 03 1900 (has links)
科学研究費補助金 研究種目:基盤研究(C)(2) 課題番号:07640638 研究代表者:星野 光雄 研究期間:1995-196年度
39

The magmatic-hydrothermal architecture of the Archean Volcanic Massive Sulfide (VMS) System at Panorama, Pilbara, Western Australia

Drieberg, Susan L. January 2003 (has links)
[Truncated abstract. Formulae and special characters can only be approximated here. Please see the pdf version of this abstract for an accurate representation.] The 3.24 Ga Panorama VMS District, located in the Pilbara Craton of Western Australia, is exposed as a cross-section through subvolcanic granite intrusions and a coeval submarine volcanic sequence that hosts Zn-Cu mineralization. The near-complete exposure across the district, the very low metamorphic grade, and the remarkable preservation of primary igneous and volcanic textures provides an unparalleled opportunity to examine the P-T-X-source evolution of a VMS ore-forming system and to assess the role of the subvolcanic intrusions as heat sources and/or metal contributors to the overlying VMS hydrothermal system. Detailed mapping of the Panorama VMS District has revealed seven major vein types related to the VMS hydrothermal system or to the subvolcanic intrusions. (1) Quartz-chalcopyrite veins, hosted in granophyric granite immediately beneath the granite-volcanic contact, formed prior to main stage VMS hydrothermal convection, and were precipitated from mixed H2OCO 2-NaCl-KCl fluids with variable salinities (2.5 to 8.5 wt% NaCl equiv). (2) Quartz-sericite veins, ubiquitous across the top 50m of the volcanic sequence, were formed from an Archean seawater with a salinity of 9.7 to 11.2 wt% NaCl equiv at temperatures of 90° to 135°C. These veins formed synchronous with the regional feldspar-sericite-quartz-ankerite alteration during seawater recharge into the main stage VMS hydrothermal convection cells. (3) Quartz-pyrite veins hosted in granophyric granite, and (4) quartz-carbonate-pyrite veins hosted in andesitebasalt, also formed from relatively unevolved Archean seawater (5.5 to 10.1 wt% NaCl equiv; 150° to 225°C), but during the collapse of the VMS hydrothermal system when cool, unmodified seawater invaded the top of the subvolcanic intrusions. (5) Quartz-topaz-muscovite greisen, (6) quartz-chlorite-chalcopyrite vein greisen, and (7) hydrothermal Cu-Zn-Sn veins are hosted in the subvolcanic intrusions. Primary H2O-NaCl-CaCl2 fluid inclusions in the vein greisens were complex high temperature hypersaline inclusions (up to 590°C and up to 56 wt% NaCl equiv). The H2O-CO2-NaCl fluid inclusions in the Cu-Zn-Sn veins have variable salinities, ranging from 4.9 to 14.1 wt% NaCl equiv, and homogenization temperatures ranging from 160° to 325°C. The hydrothermal quartz veins and magmatic metasomatic phases in the subvolcanic intrusions were formed from a magmatic-hydrothermal fluid that had evolved through wallrock reactions, cooling, and finally mixing with seawater-derived VMS hydrothermal fluids.
40

The Archaean silicon cycle insights from silicon isotopes and Ge/Si ratios in banded iron formations, palaeosols and shales

Delvigne, Camille 05 September 2012 (has links)
The external silicon cycle during the Precambrian (4.5-0.5 Ga) is not well understood despite its key significance to apprehend ancient dynamics at the surface of the Earth. In the absence of silicifying organisms, external silicon cycle dramatically differs from nowadays. Our current understanding of Precambrian oceans is limited to the assumption that silicon concentrations were close to saturation of amorphous silica. This thesis aims to bring new insights to different processes that controlled the geochemical silicon cycle during the Archaean (3.8-2.5 Ga). Bulk rock Ge/Si ratio and Si isotopes (δ30Si) offer ideal tracers to unravel different processes that control the Si cycle given their sensitivity to fractionation under near-surface conditions. <p>First, this study focuses on Si inputs and outputs to ocean over a limited time period (~2.95 Ga Pongola Supergroup, South Africa) through the study of a palaeosol sequence and a contemporaneous banded iron formation. The palaeosol study offers precious clues in the comprehension of Archaean weathering processes and Si transfer from continent to ocean. Desilication and iron leaching were shown to be the major Archaean weathering processes. The occurrence of weathering residues issued of these processes as major component in fine-grained detrital sedimentary mass (shales) attests that identified weathering processes are widely developed and suggest an important dissolved Si flux from continent to the ocean. In parallel, banded iron formations (BIFs), typically characterised by alternation of iron-rich and silica-rich layers, represent an extraordinary record of the ocean-derived silica precipitation throughout the Precambrian. A detailed study of a 2.95 Ga BIF with excellent stratigraphic constraints identifies a seawater reservoir mixed with significant freshwater and very limited amount of high temperature hydrothermal fluids as the parental water mass from which BIFs precipitated. In addition, the export of silicon promoted by the silicon adsorption onto Fe-oxyhydroxides is evidenced. Then, both Si- and Fe-rich layers of BIFs have a common source water mass and a common siliceous ferric oxyhydroxides precursor. Thus, both palaeosols and BIFs highlight the significance of continental inputs to ocean, generally under- estimated or neglected, as well as the close link between Fe and Si cycles. <p>In a second time, this study explores secular changes in the Si cycle along the Precambrian. During this timespan, the world ocean underwent a progressive decrease in hydrothermal inputs and a long-term cooling. Effects of declining temperature over the oceanic Si cycle are highlighted by increasing δ30Si signatures of both chemically precipitated chert and BIF through time within the 3.8-2.5 Ga time interval. Interestingly, Si isotope compositions of BIF are shown to be kept systematically lighter of about 1.5‰ than contemporaneous cherts suggesting that both depositions occurred through different mechanisms. Along with the progressive increase of δ30Si signature, a decrease in Ge/Si ratios is attributed to a decrease in hydrothermal inputs along with the development of large and widespread desilication during continental weathering.<p><p><p>Le cycle externe du silicium au précambrien (4.5-0.5 Ga) reste mal compris malgré sa position clé dans la compréhension des processus opérant à la surface de la Terre primitive. En l’absence d’organismes sécrétant un squelette externe en silice, le cycle précambrien du silicium était vraisemblablement très différent de celui que nous connaissons à l’heure actuelle. Notre conception de l’océan archéen est limitée à l’hypothèse d’une concentration en silicium proche de la saturation en silice amorphe. Cette thèse vise à une meilleure compréhension des processus qui contrôlaient le cycle géochimique externe du silicium à l’archéen (3.8-2.5 Ga). Dans cette optique, le rapport germanium/silicium (Ge/Si) et les isotopes stables du silicium (δ30Si) représentent des traceurs idéaux pour démêler les différents processus contrôlant le cycle du Si. <p>Dans un premier temps, cette étude se focalise sur les apports et les exports de silicium à l’océan sur une période de temps restreinte (~2.95 Ga Pongola Supergroup, Afrique du Sud) via l’étude d’un paléosol et d’un dépôt sédimentaire de précipitation chimique quasi-contemporain. L’étude du paléosol apporte de précieux indices quant aux processus d’altération archéens et aux transferts de silicium des continents vers l’océan. Ainsi, la désilicification et le lessivage du fer apparaissent comme des processus majeurs de l’altération archéenne. La présence de résidus issus de ces processus d’altération en tant que composants majeurs de dépôts détritiques (shales) atteste de la globalité de ces processus et suggère des flux significatifs en silicium dissout des continents vers l’océan. En parallèle, les « banded iron formations » (BIFs), caractérisés par une alternance de niveaux riches en fer et en silice, représentent un enregistrement extraordinaire et caractéristique du précambrien de précipitation de silice à partir de l’océan. Une étude détaillée d’un dépôt de BIFs permet d’identifier une contribution importante des eaux douces dans la masse d’eau à partir de laquelle ces roches sont précipitées. Par ailleurs, un mécanisme d’export de silicium via absorption sur des oxyhydroxydes de fer est mis en évidence. Ainsi, les niveaux riches en fer et riche en silice constituant les BIFs auraient une même origine, un réservoir d’eau de mer mélangée avec des eaux douces et une contribution minime de fluides hydrothermaux de haute température, et un même précurseur commun. Dès lors, tant les paléosols que les BIFs mettent en évidence l’importance des apports continentaux à l’océan, souvent négligés ou sous estimés, ainsi que le lien étroit entre les cycles du fer et du silicium.<p>Dans un second temps, cette étude explore l’évolution du cycle du silicium au cours du précambrien. Durant cette période, l’océan voit les apports hydrothermaux ainsi que sa température diminuer. Dans l’intervalle de temps 3.8-2.5 Ga, les effets de tels changements sur le cycle du silicium sont marqués par un alourdissement progressif des signatures isotopiques des cherts et des BIFs. Le fort parallélisme entre l’évolution temporelle des compositions isotopiques des deux précipités met en évidence leur origine commune, l’océan. Cependant, les compositions isotopiques des BIFs sont systématiquement plus légères d’environ 1.5‰ que les signatures enregistrées pas les cherts. Cette différence est interprétée comme le reflet de mécanismes de dépôts différents. L’alourdissement progressif des compositions isotopiques concomitant à une diminution des rapports Ge/Si reflètent une diminution des apports hydrothermaux ainsi que la mise en place d’une désilicification de plus en plus importante et/ou généralisée lors de l’altération des continents.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0665 seconds