• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the errors of spectral shallow-water limited-area model simulations using an extension technique

Simmel, Martin, Harlander, Uwe 28 November 2016 (has links) (PDF)
Although the spectral technique is frequently used for the horizontal discretization in global atmospheric models, it is not common in limited area models (LAMs) because of the non-periodic boundary conditions. We apply the Haugen-Machenhauer extension technique to a regional three-layer shallow-water model based on double Fourier series. The method extends the time-dependent boundary fields into a zone outside the integration area in a way that periodic fields are obtained. The boundary fields necessary for the regional model simulations are calculated in advance by a global simulation performed. In contrast to other studies, we use exactly the same numerical model for the global and the regional simulation, respectively. The only difference between these simulations is the model domain. Therefore, a relatively objective measure for errors associated with the extension technique can be obtained. First, we compare an analytic stationary non-linear and non-periodic solution of the governing model equations with the spectral LAM solution. Secondly, we compare the time evolution of pressure and fiow structures during a westerly fiow across an asymmetric large-scale topography in the global and regional model domains. Both simulations show a good agreement between the regional and the global solutions. The rms-errors amount to about 2 m for the layer heights and 0.2 ms-1 for the velocity components in the mountain fiow case after a 48 h integration period. Finally, we repeat this simulation with models based on 2nd and 4th order finite differences, respectively, and compare the errors of the spectral model version with the errors of the grid point versions. We demonstrate that the high accuracy of global spectral methods can also be realized in the regional model by using the Haugen-Machenhauer extension technique. / Obwohl spektrale Techniken häufig zur horizontalen Diskretisierung in globalen Atmosphärenmodellen genutzt werden, sind sie aufgrund der nicht-periodischen Randbedingungen in Regionalmodellen nicht üblich. Wir verwenden das Erweiterungsverfahren von Haugen und Machenhauer in einem Flachwassermodell mit drei Schichten, das auf doppelten Fourier-Reihen basiert. Das Verfahren setzt die zeitabhängigen Randfelder so in einen Bereich außerhalb des Integrationsgebiets fort, daß man periodische Randbedingungen erhält. Die für die Simulationen mit dem Regionalmodell benötigten Randfelder werden mittels einer zuvor durchgeführten globalen Simulation berechnet. Im Gegensatz zu anderen Untersuchungen verwenden wir genau das gleiche Modell für die globale und die regionale Simulation. Der einzige Unterschied zwischen den beiden Simulationen ist das Modellgebiet. Dadurch erhält man ein relativ objektives Maß für die Fehler, die durch die Anwendung des Erweiterungsverfahrens entstehen. Als ersten Test vergleichen wir zunächst eine analytische, stationäre, nicht-lineare und nicht-periodische Lösung der Modellgleichungen mit der spektralen Lösung des Regionalmodells. Zweitens vergleichen wir die zeitliche Entwicklung von Druck- und Strömungsmustern während einer westlichen Strömung über eine unsymmetrische, großskalige Topographie im globalen bzw. regionalen Modellgebiet. Beide Simulationen zeigen eine gute Übereinstimmung der globalen und regionalen Lösungen. Die rms-Fehler betragen ungefähr 2 m für die Schichthöhen und 0.2 ms-1 für die Geschwindigkeitskomponenten bei der Bergüberströmungssimulation nach einer Integrationszeit von 48 h. Darüberhinaus wiederholen wir diese Simulation mit auf Finiten Differenzen 2. bzw. 4. Ordnung basierenden Modellen und vergleichen die Fehler der spektralen und der Gitterpunktversionen. Wir zeigen, daß die hohe Genauigkeit der globalen spektralen Methoden durch die Anwendung des Erweiterungsverfahrens von Haugen und Machenhauer auch auf das regionale Gebiet übertragen werden kann.
2

Fraction Models That Promote Understanding For Elementary Students

Hull, Lynette 01 January 2005 (has links)
This study examined the use of the set, area, and linear models of fraction representation to enhance elementary students' conceptual understanding of fractions. Students' preferences regarding the set, area, and linear models of fractions during independent work was also investigated. This study took place in a 5th grade class consisting of 21 students in a suburban public elementary school. Students participated in classroom activities which required them to use manipulatives to represent fractions using the set, area, and linear models. Students also had experiences using the models to investigate equivalent fractions, compare fractions, and perform operations. Students maintained journals throughout the study, completed a pre and post assessment, participated in class discussions, and participated in individual interviews concerning their fraction model preference. Analysis of the data revealed an increase in conceptual understanding. The data concerning student preferences were inconsistent, as students' choices during independent work did not always reflect the preferences indicated in the interviews.
3

On the errors of spectral shallow-water limited-area model simulations using an extension technique

Simmel, Martin, Harlander, Uwe 28 November 2016 (has links)
Although the spectral technique is frequently used for the horizontal discretization in global atmospheric models, it is not common in limited area models (LAMs) because of the non-periodic boundary conditions. We apply the Haugen-Machenhauer extension technique to a regional three-layer shallow-water model based on double Fourier series. The method extends the time-dependent boundary fields into a zone outside the integration area in a way that periodic fields are obtained. The boundary fields necessary for the regional model simulations are calculated in advance by a global simulation performed. In contrast to other studies, we use exactly the same numerical model for the global and the regional simulation, respectively. The only difference between these simulations is the model domain. Therefore, a relatively objective measure for errors associated with the extension technique can be obtained. First, we compare an analytic stationary non-linear and non-periodic solution of the governing model equations with the spectral LAM solution. Secondly, we compare the time evolution of pressure and fiow structures during a westerly fiow across an asymmetric large-scale topography in the global and regional model domains. Both simulations show a good agreement between the regional and the global solutions. The rms-errors amount to about 2 m for the layer heights and 0.2 ms-1 for the velocity components in the mountain fiow case after a 48 h integration period. Finally, we repeat this simulation with models based on 2nd and 4th order finite differences, respectively, and compare the errors of the spectral model version with the errors of the grid point versions. We demonstrate that the high accuracy of global spectral methods can also be realized in the regional model by using the Haugen-Machenhauer extension technique. / Obwohl spektrale Techniken häufig zur horizontalen Diskretisierung in globalen Atmosphärenmodellen genutzt werden, sind sie aufgrund der nicht-periodischen Randbedingungen in Regionalmodellen nicht üblich. Wir verwenden das Erweiterungsverfahren von Haugen und Machenhauer in einem Flachwassermodell mit drei Schichten, das auf doppelten Fourier-Reihen basiert. Das Verfahren setzt die zeitabhängigen Randfelder so in einen Bereich außerhalb des Integrationsgebiets fort, daß man periodische Randbedingungen erhält. Die für die Simulationen mit dem Regionalmodell benötigten Randfelder werden mittels einer zuvor durchgeführten globalen Simulation berechnet. Im Gegensatz zu anderen Untersuchungen verwenden wir genau das gleiche Modell für die globale und die regionale Simulation. Der einzige Unterschied zwischen den beiden Simulationen ist das Modellgebiet. Dadurch erhält man ein relativ objektives Maß für die Fehler, die durch die Anwendung des Erweiterungsverfahrens entstehen. Als ersten Test vergleichen wir zunächst eine analytische, stationäre, nicht-lineare und nicht-periodische Lösung der Modellgleichungen mit der spektralen Lösung des Regionalmodells. Zweitens vergleichen wir die zeitliche Entwicklung von Druck- und Strömungsmustern während einer westlichen Strömung über eine unsymmetrische, großskalige Topographie im globalen bzw. regionalen Modellgebiet. Beide Simulationen zeigen eine gute Übereinstimmung der globalen und regionalen Lösungen. Die rms-Fehler betragen ungefähr 2 m für die Schichthöhen und 0.2 ms-1 für die Geschwindigkeitskomponenten bei der Bergüberströmungssimulation nach einer Integrationszeit von 48 h. Darüberhinaus wiederholen wir diese Simulation mit auf Finiten Differenzen 2. bzw. 4. Ordnung basierenden Modellen und vergleichen die Fehler der spektralen und der Gitterpunktversionen. Wir zeigen, daß die hohe Genauigkeit der globalen spektralen Methoden durch die Anwendung des Erweiterungsverfahrens von Haugen und Machenhauer auch auf das regionale Gebiet übertragen werden kann.
4

Reprezentace mezní vrstvy atmosféry modelem WRF ve vysokém rozlišení / Atmospheric boundary layer representation in the high-resolution WRF model

Peštová, Zuzana January 2021 (has links)
This diploma thesis deals with the comparison of the results of simulations of the numerical model WRF in the prediction mode for 9 schemes of boundary layer parameterization and in the climatic mode for 4 selected schemes. The first part of the work is devoted to the WRF model and especially its options for model physics with a focus on boundary layer schemes. The second part describes the experimental setup of the performed simulations. The third part then compares the obtained results for the prediction and climate mode with the measured data.
5

Grid Scale Storage Placement In Power Systems

Bodegård, Andreas January 2022 (has links)
The increasing amount of renewable energy sources is applying more and more pressure on today’s power system. Additionally, plannable sources of energy, which are mostly non-renewable, are being decommissioned at a high rate to combat climate change. The decommissioning of non-renewable producers and the increasing number of intermittent sources of energy are causing an increasingly volatile power system. In addition to the lack of plannable production, the inertia from synchronously rotating machines is decreasing due to the lack of contribution from renewable sources. The inertia of a power system assists in slowing down large frequency changes. When a notably large difference between production and consumption occurs in a power system with low inertia, components which can quickly counteract these effects by supplying the system with active power, are needed. The low inertia can also cause problems to the synchronicity of the synchronously rotating machines in the system, namely the rotor angle stability. A lack of rotorangle stability can cause the synchronicity of the synchronously rotating machines to be questioned. Fast frequency response units supply the power system with active power for a short period of time to reduce the rate of change of frequency and frequency deviation, which in turn allows the self-regulating units more time to adjust their production. Furthermore, these units can improve rotor angle stability. Such units can consist of batteries which are both serially and parallel connected with their associated control unit. This thesis aims to, with the help of the power system analysis program PowerFactory, and its associated dynamic simulation tools, formulate a methodology which can be used in power system models to locate the best placement for fast frequency response units. The results show that the formulated methodology can be used to find the best position of fast frequency response units for frequency deviation-, rate of change of frequency- and rotor angle stability support.

Page generated in 0.0556 seconds