• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 10
  • 4
  • 4
  • Tagged with
  • 49
  • 49
  • 13
  • 12
  • 12
  • 12
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Arrays de microfones para medida de campos acústicos. / Microphone arrays for acoustic field measurements.

Flávio Protásio Ribeiro 23 January 2012 (has links)
Imageamento acústico é um problema computacionalmente caro e mal-condicionado, que envolve estimar distribuições de fontes com grandes arranjos de microfones. O método clássico para imageamento acústico utiliza beamforming, e produz a distribuição de fontes de interesse convoluída com a função de espalhamento do arranjo. Esta convolução borra a imagem ideal, significativamente diminuindo sua resolução. Convoluções podem ser evitadas com técnicas de ajuste de covariância, que produzem estimativas de alta resolução. Porém, estas têm sido evitadas devido ao seu alto custo computacional. Nesta tese, admitimos um arranjo bidimensional com geometria separável, e desenvolvemos transformadas rápidas para acelerar imagens acústicas em várias ordens de grandeza. Estas transformadas são genéricas, e podem ser aplicadas para acelerar beamforming, algoritmos de deconvolução e métodos de mínimos quadrados regularizados. Assim, obtemos imagens de alta resolução com algoritmos estado-da-arte, mantendo baixo custo computacional. Mostramos que arranjos separáveis produzem estimativas competitivas com as de geometrias espirais logaritmicas, mas com enormes vantagens computacionais. Finalmente, mostramos como estender este método para incorporar calibração, um modelo para propagação em campo próximo e superfícies focais arbitrárias, abrindo novas possibilidades para imagens acústicas. / Acoustic imaging is a computationally intensive and ill-conditioned inverse problem, which involves estimating high resolution source distributions with large microphone arrays. The classical method for acoustic imaging consists of beamforming, and produces the source distribution of interest convolved with the array point spread function. This convolution smears the image of interest, significantly reducing its effective resolution. Convolutions can be avoided with covariance fitting methods, which have been known to produce robust high-resolution estimates. However, these have been avoided due to prohibitive computational costs. In this thesis, we assume a 2D separable array geometry, and develop fast transforms to accelerate acoustic imaging by several orders of magnitude with respect to previous methods. These transforms are very generic, and can be applied to accelerate beamforming, deconvolution algorithms and regularized least-squares solvers. Thus, one can obtain high-resolution images with state-of-the-art algorithms, while maintaining low computational cost. We show that separable arrays deliver accuracy competitive with multi-arm spiral geometries, while producing huge computational benefits. Finally, we show how to extend this approach with array calibration, a near-field propagation model and arbitrary focal surfaces, opening new and exciting possibilities for acoustic imaging.
12

RF MIMO Systems for Wide-Area Indoor Human Motion Monitoring

Xu, Chi January 2016 (has links)
<p>Human motion monitoring is an important function in numerous applications. In this dissertation, two systems for monitoring motions of multiple human targets in wide-area indoor environments are discussed, both of which use radio frequency (RF) signals to detect, localize, and classify different types of human motion. In the first system, a coherent monostatic multiple-input multiple-output (MIMO) array is used, and a joint spatial-temporal adaptive processing method is developed to resolve micro-Doppler signatures at each location in a wide-area for motion mapping. The downranges are obtained by estimating time-delays from the targets, and the crossranges are obtained by coherently filtering array spatial signals. Motion classification is then applied to each target based on micro-Doppler analysis. In the second system, multiple noncoherent multistatic transmitters (Tx's) and receivers (Rx's) are distributed in a wide-area, and motion mapping is achieved by noncoherently combining bistatic range profiles from multiple Tx-Rx pairs. Also, motion classification is applied to each target by noncoherently combining bistatic micro-Doppler signatures from multiple Tx-Rx pairs. For both systems, simulation and real data results are shown to demonstrate the ability of the proposed methods for monitoring patient repositioning activities for pressure ulcer prevention.</p> / Dissertation
13

Modal Analysis and Synthesis of Broadband Nearfield Beamforming Arrays

Abhayapala, P. Thushara D., Thushara.Abhayapala@anu.edu.au January 2000 (has links)
This thesis considers the design of a beamformer which can enhance desired signals in an environment consisting of broadband nearfield and/or farfield sources. The thesis contains: a formulation of a set of analysis tools which can provide insight into the intrinsic structure of array processing problems; a methodology for nearfield beamforming; theory and design of a general broadband beamformer; and a consideration of a coherent nearfield broadband adaptive beamforming problem. To a lesser extent, the source localization problem and background noise modeling are also treated. ¶: A set of analysis tools called modal analysis techniques which can be used to a solve wider class of array signal processing problems, is first formulated. The solution to the classical wave equation is studied in detail and exploited in order to develop these techniques. ¶: Three novel methods of designing a beamformer having a desired nearfield broadband beampattern are presented. The first method uses the modal analysis techniques to transform the desired nearfield beampattern to an equivalent farfield beampattern. A farfield beamformer is then designed for a transformed farfield beampattern which, if achieved, gives the desired nearfield pattern exactly. The second method establishes an asymptotic equivalence, up to complex conjugation, of two problems: (i) determining the nearfield performance of a farfield beampattern specification, and (ii) determining the equivalent farfield beampattern corresponding to a nearfield beampattern specification. Using this reciprocity relationship a computationally simple nearfield beamforming procedure is developed. The third method uses the modal analysis techniques to find a linear transformation between the array weights required to have the desired beampattern for farfield and nearfield, respectively. ¶: An efficient parameterization for the general broadband beamforming problem is introduced with a single parameter to focus the beamformer to a desired operating radius and another set of parameters to control the actual broadband beampattern shape. This parameterization is derived using the modal analysis techniques and the concept of the theoretical continuous aperture. ¶: A design of an adaptive beamformer to operate in a signal environment consisting of broadband nearfield sources, where some of interfering signals may be correlated with desired signal is also considered. Application of modal analysis techniques to noise modeling and broadband coherent source localization conclude the thesis.
14

Application of Array Processing Techniques to CDMA Multiuser Detection Systems

Chang, Ann-Chen 11 May 2000 (has links)
Several issues on the problems of the adaptive array beamforming and code-division multiple access (CDMA) multiuser detection are investigated in this dissertation. Recently, based on the decomposition of observation vector space into two orthogonal eigenspace, the eigenspace-based (ESB) and the generalized eigenspace-based (GEIB) array signal processing techniques have been widely discussed due to their superior performance over conventional techniques. At first, the purpose of this dissertation is mainly to present robust and efficient algorithms for further enhancing the performance of ESB and GEIB techniques under imperfect and practical operation environments. We also propose a method of corrected steering angles to combat the supersensitivity of eigenanalysis interference canceler (EIC) to source number overestimation and steering angle errors. We analyze the performance of several ESB multiuser detectors, including conventional direct-form detector and generalized sidelobe canceler (GSC) for synchronous CDMA system with and without desired user code mismatch. We also present a way of resolving spreading code mismatch in blind multiuser detection with subspace-based technique. Furthermore, the structure of GSC can be utilized to deal with the case of the desired user's SNR < 0 dB. Next, algorithm for adaptive H¡Û filter has demonstrated the advantage of reduction of sensitivity to modeling error (due to finite tap number) and suitability for arbitrary ambient noise over recursive least squares (RLS) algorithm. However, the computational burden of the H¡Û algorithm is enormous. In order to reduce the computational complexity, subweight partition scheme is employed to an H¡Û-based algorithm. The computation burden of the conventional adaptive H¡Û algorithm can be mitigated with slight performance degradation. The H¡Û-based algorithm is then further extended to the adaptive beamformer and blind multiuser detector. Finally, we present new diversity techniques for multiuser detection under multipath fading channels in asynchronous CDMA systems. The enhanced capacity of diversity for multipath channels can be achieved by appropriately utilizing the constraint matrix and the response vector in multiple constraint minimum variance (MCMV) algorithm. Moreover, the proposed techniques offer gratifying multiple access interference (MAI) suppression. We also incorporate the signal subspace-based projection into MCMV detector, so that the noise enhancement in the MCMV criterion can be reduced.
15

Array-based Spectro-temporal Masking For Automatic Speech Recognition

Moghimi, Amir Reza 01 May 2014 (has links)
Over the years, a variety of array processing techniques have been applied to the problem of enhancing degraded speech to improve automatic speech recognition. In this context, linear beamforming has long been the approach of choice, for reasons including good performance, robustness and analytical simplicity. While various non-linear techniques - typically based to some extent on the study of auditory scene analysis - have also been of interest, they tend to lag behind their linear counterparts in terms of simplicity, scalability and exibility. Nonlinear techniques are also more difficult to analyze and lack the systematic descriptions available in the study of linear beamformers. This work focuses on a class of nonlinear processing, known as time-frequency (T-F) masking - a.k.a. spectro-temporal masking { whose variants comprise a significant portion of the existing techniques. T-F masking is based on accepting or rejecting individual time-frequency cells based on some estimate of local signal quality. Analyses are developed that attempt to mirror the beam patterns used to describe linear processing, leading to a view of T-F masking as "nonlinear beamforming". Two distinct formulations of these "nonlinear beam patterns" are developed, based on different metrics of the algorithms behavior; these formulations are modeled in a variety of scenarios to demonstrate the flexibility of the idea. While these patterns are not quite as simple or all-encompassing as traditional beam patterns in microphone-array processing, they do accurately represent the behavior of masking algorithms in analogous and intuitive ways. In addition to analyzing this class of nonlinear masking algorithm, we also attempt to improve its performance in a variety of ways. Improvements are proposed to the baseline two-channel version of masking, by addressing both the mask estimation and the signal reconstruction stages; the latter more successfully than the former. Furthermore, while these approaches have been shown to outperform linear beamforming in two-sensor arrays, extensions to larger arrays have been few and unsuccessful. We find that combining beamforming and masking is a viable method of bringing the benefits of masking to larger arrays. As a result, a hybrid beamforming-masking approach, called "post-masking", is developed that improves upon the performance of MMSE beamforming (and can be used with any beamforming technique), with the potential for even greater improvement in the future.
16

Compréhension des processus magmatiques et localisation des sources sismo-volcaniques avec des antennes sismiques multicomposantes / Understanding magmatic processes and seismo-volcano source localization with multicomponent seismic arrays

Inza Callupe, Lamberto Adolfo 30 May 2013 (has links)
Dans cette thèse, nous étudions le problème de la localisation de sources sismo-volcanique, à partir des données enregistrées par des réseaux de capteurs composés de nouveaux sismomètres à trois composantes (3C). Nous nous concentrerons sur le volcan Ubinas, l'un des plus actifs au Pérou. Nous développons une nouvelle approche (MUSIC-3C) basée sur la méthode MUSIC permetant de retourner les 3 paramètres utiles (lenteur, azimut et incidence). Pour valider notre méthodologie, nous analysons des sources synthétiques propagées en tenant compte de la topographie du volcan Ubinas. Dans cette expérience, les données synthétiques ont été générées pour plusieurs sources situées à différentes profondeurs sous le cratère Ubinas. Nous utilisons l'algorithme MUSIC-3C pour les relocaliser. Nous traitons également des données réelles provenant d'une expérience de terrain menée sur le volcan Ubinas (Pérou) en 2009 par les équipes de recherche de l'IRD-France (Institut de Recherche pour le Déveleppment), UCD l'Irlande (projet VOLUME) et l'Institut de Géophysique du Pérou (IGP). Nous utilisons l'algorithme MUSIC-3C pour localiser les événements explosifs (type vulcanien), ce qui nous permet d'identifier et d'analyser les processus physiques de ces événements, à la suite de cette analyse, nous avons trouvé deux sources pour chaque explosion situées à 300 m et 1100 m en dessous du fond du cratère actif. Basé sur les mécanismes éruptifs proposés pour d'autres volcans du même type, nous interprétons la position de ces sources ainsi que les limites du conduit éruptif impliqué dans le processus de fragmentation. / In this thesis, we study the seismo-volcanic source localization using data recorded by new sensor arrays composed of three-component (3C) seismometers deployed on Ubinas stratovolcano (Peru). We develop a new framework (MUSIC-3C) of source localization method based on the well-known MUSIC algorithm. To investigate the performance of the MUSIC-3C method, we use synthetic datasets designed from eight broadband isotropic seismic sources located beneath the crater floor at different depths. The fundamental scheme of the MUSIC-3C method exploits the fact of the cross-spectral matrix of 3C array data, corresponding to the first seismic signal arrivals, provides of useful vector components (slowness, back-azimuth and incidence angle) from the seismic source. Application of the MUSIC-3C method on synthetic datasets shows the recovery of source positions. Real data used in this study was collected during seismic measurements with two seismic antennas deployed at Ubinas volcano in 2009, whose experiment conduced by volcanic teams of IRD-France (l'Institute de Recherche pour le Déveleppment), Geophysics group University College Dublin Ireland and Geophysical Institute of Peru (IGP). We apply the MUSIC-3C algorithm to investigate wave fields associated with the magmatic activity of Ubinas volcano. These analysis evidence a complex mechanism of vulcanian eruptions in which their seismic sources are found at two separated sources located at depths of 300 m and 1100 m beneath the crater floor. This implies the reproduction of similar mechanisms into the conduit. Based on the eruptive mechanisms proposed for other volcanoes of the same type, we interpret the position of this sources as the limits of the conduit portion that was involved in the fragmentation process.
17

Unit Circle Roots Based Sensor Array Signal Processing

Smith, Jared P. 27 May 2022 (has links)
No description available.
18

Bayesian Microphone Array Processing / ベイズ法によるマイクロフォンアレイ処理

Otsuka, Takuma 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第18412号 / 情博第527号 / 新制||情||93(附属図書館) / 31270 / 京都大学大学院情報学研究科知能情報学専攻 / (主査)教授 奥乃 博, 教授 河原 達也, 准教授 CUTURI CAMETO Marco, 講師 吉井 和佳 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
19

Acoustic source localization in 3D complex urban environments

Choi, Bumsuk 05 June 2012 (has links)
The detection and localization of important acoustic events in a complex urban environment, such as gunfire and explosions, is critical to providing effective surveillance of military and civilian areas and installations. In a complex environment, obstacles such as terrain or buildings introduce multipath propagations, reflections, and diffractions which make source localization challenging. This dissertation focuses on the problem of source localization in three-dimensional (3D) realistic urban environments. Two different localization techniques are developed to solve this problem: a) Beamforming using a few microphone phased arrays in conjunction with a high fidelity model and b) Fingerprinting using many dispersed microphones in conjunction with a low fidelity model of the environment. For an effective source localization technique using microphone phased arrays, several candidate beamformers are investigated using 2D and corresponding 3D numerical models. Among them, the most promising beamformers are chosen for further investigation using 3D large models. For realistic validation, localization error of the beamformers is analyzed for different levels of uncorrelated noise in the environment. Multiple-array processing is also considered to improve the overall localization performance. The sensitivity of the beamformers to uncertainties that cannot be easily accounted for (e.g. temperature gradient and unmodeled object) is then investigated. It is observed that evaluation in 3D models is critical to assess correctly the potential of the localization technique. The enhanced minimum variance distortionless response (EMVDR) is identified to be the only beamformer that has super-directivity property (i.e. accurate localization capability) and still robust to uncorrelated noise in the environment. It is also demonstrated that the detrimental effect of uncertainties in the modeling of the environment can be alleviated by incoherent multiple arrays. For efficient source localization technique using dispersed microphones in the environment, acoustic fingerprinting in conjunction with a diffused-based energy model is developed as an alternative to the beamforming technique. This approach is much simpler requiring only microphones rather than arrays. Moreover, it does not require an accurate modeling of the acoustic environment. The approach is validated using the 3D large models. The relationship between the localization accuracy and the number of dispersed microphones is investigated. The effect of the accuracy of the model is also addressed. The results show a progressive improvement in the source localization capabilities as the number of microphones increases. Moreover, it is shown that the fingerprints do not need to be very accurate for successful localization if enough microphones are dispersed in the environment. / Ph. D.
20

Non-contract Estimation of Respiration and Heartbeat Rate using Ultra-Wideband Signals

Li, Chang 29 September 2008 (has links)
The use of ultra-wideband (UWB) signals holds great promise for remote monitoring of vital-signs which has applications in the medical, for first responder and in security. Previous research has shown the feasibility of a UWB-based radar system for respiratory and heartbeat rate estimation. Some simulation and real experimental results are presented to demonstrate the capability of the respiration rate detection. However, past analysis are mostly based upon the assumption of an ideal experiment environment. The accuracy of the estimation and interference factors of this technology has not been investigated. This thesis establishes an analytical framework for the FFT-based signal processing algorithms to detect periodic bio-signals from a single target. Based on both simulation and experimental data, three basic challenges are identified: (1) Small body movement during the measurement interval results in slow variations in the consecutive received waveforms which mask the signals of interest. (2) The relatively strong respiratory signal with its harmonics greatly impact the detection of heartbeat rate. (3) The non-stationary nature of bio-signals creates challenges for spectral analysis. Having identified these problems, adaptive signal processing techniques have been developed which effectively mitigate these problems. Specifically, an ellipse-fitting algorithm is adopted to track and compensate the aperiodic large-scale body motion, and a wavelet-based filter is applied for attenuating the interference caused by respiratory harmonics to accurately estimate the heartbeat frequency. Additionally, the spectrum estimation of non-stationary signals is examined using a different transform method. Results from simulation and experiments show that substantial improvement is obtained by the use of these techniques. Further, this thesis examines the possibility of multi-target detection based on the same measurement setup. Array processing techniques with subspace-based algorithms are applied to estimate multiple respiration rates from different targets. The combination of array processing and single- target detection techniques are developed to extract the heartbeat rates. The performance is examined via simulation and experimental results and the limitation of the current measurement setup is discussed. / Master of Science

Page generated in 0.1031 seconds