• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 10
  • 4
  • 4
  • Tagged with
  • 49
  • 49
  • 13
  • 12
  • 12
  • 12
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Détection et filtrage rang faible pour le traitement d'antenne utilisant la théorie des matrices aléatoires en grandes dimensions / Low rank detection and estimation using random matrix theory approaches for antenna array processing

Combernoux, Alice 29 January 2016 (has links)
Partant du constat que dans plus en plus d'applications, la taille des données à traiter augmente, il semble pertinent d'utiliser des outils appropriés tels que la théorie des matrices aléatoires dans le régime en grandes dimensions. Plus particulièrement, dans les applications de traitement d'antenne et radar spécifiques STAP et MIMO-STAP, nous nous sommes intéressés au traitement d'un signal d'intérêt corrompu par un bruit additif composé d'une partie dite rang faible et d'un bruit blanc gaussien. Ainsi l'objet de cette thèse est d'étudier dans le régime en grandes dimensions la détection et le filtrage dit rang faible (fonction de projecteurs) pour le traitement d'antenne en utilisant la théorie des matrices aléatoires.La thèse propose alors trois contributions principales, dans le cadre de l'analyse asymptotique de fonctionnelles de projecteurs. Ainsi, premièrement, le régime en grandes dimensions permet ici de déterminer une approximation/prédiction des performances théoriques non asymptotiques, plus précise que ce qui existe actuellement en régime asymptotique classique (le nombre de données d'estimation tends vers l'infini à taille des données fixe). Deuxièmement, deux nouveaux filtres et deux nouveaux détecteurs adaptatifs rang faible ont été proposés et il a été montré qu'ils présentaient de meilleures performances en fonction des paramètres du système en terme de perte en RSB, probabilité de fausse alarme et probabilité de détection. Enfin, les résultats ont été validés sur une application de brouillage, puis appliqués aux traitements radar STAP et MIMO-STAP sparse. L'étude a alors mis en évidence une différence notable avec l'application de brouillage liée aux modèles de matrice de covariance traités dans cette thèse. / Nowadays, more and more applications deal with increasing dimensions. Thus, it seems relevant to exploit the appropriated tools as the random matrix theory in the large dimensional regime. More particularly, in the specific array processing applications as the STAP and MIMO-STAP radar applications, we were interested in the treatment of a signal of interest corrupted by an additive noise composed of a low rang noise and a white Gaussian. Therefore, the aim of this thesis is to study the low rank filtering and detection (function of projectors) in the large dimensional regime for array processing with random matrix theory tools.This thesis has three main contributions in the context of asymptotic analysis of projector functionals. Thus, the large dimensional regime first allows to determine an approximation/prediction of theoretical non asymptotic performance, much more precise than the literature in the classical asymptotic regime (when the number of estimation data tends to infinity at a fixed dimension). Secondly, two new low rank adaptive filters and detectors have been proposed and it has been shown that they have better performance as a function of the system parameters, in terms of SINR loss, false alarm probability and detection probability. Finally, the results have been validated on a jamming application and have been secondly applied to the STAP and sparse MIMO-STAP processings. Hence, the study highlighted a noticeable difference with the jamming application, related to the covariance matrix models concerned by this thesis.
32

Développement et études de performances de nouveaux détecteurs/filtres rang faible dans des configurations RADAR multidimensionnelles / Derivation and performance analysis of improved low rank filter/detectors for multidimensional radar configurations

Boizard, Maxime 13 December 2013 (has links)
Dans le cadre du traitement statistique du signal, la plupart des algorithmes couramment utilisés reposent sur l'utilisation de la matrice de covariance des signaux étudiés. En pratique, ce sont les versions adaptatives de ces traitements, obtenues en estimant la matrice de covariance à l'aide d'échantillons du signal, qui sont utilisés. Ces algorithmes présentent un inconvénient : ils peuvent nécessiter un nombre d'échantillons important pour obtenir de bons résultats. Lorsque la matrice de covariance possède une structure rang faible, le signal peut alors être décomposé en deux sous-espaces orthogonaux. Les projecteurs orthogonaux sur chacun de ces sous espaces peuvent alors être construits, permettant de développer des méthodes dites rang faible. Les versions adaptatives de ces méthodes atteignent des performances équivalentes à celles des traitements classiques tout en réduisant significativement le nombre d'échantillons nécessaire. Par ailleurs, l'accroissement de la taille des données ne fait que renforcer l'intérêt de ce type de méthode. Cependant, cet accroissement s'accompagne souvent d'un accroissement du nombre de dimensions du système. Deux types d'approches peuvent être envisagées pour traiter ces données : les méthodes vectorielles et les méthodes tensorielles. Les méthodes vectorielles consistent à mettre les données sous forme de vecteurs pour ensuite appliquer les traitements classiques. Cependant, lors de la mise sous forme de vecteur, la structure des données est perdue ce qui peut entraîner une dégradation des performances et/ou un manque de robustesse. Les méthodes tensorielles permettent d'éviter cet écueil. Dans ce cas, la structure est préservée en mettant les données sous forme de tenseurs, qui peuvent ensuite être traités à l'aide de l'algèbre multilinéaire. Ces méthodes sont plus complexes à utiliser puisqu'elles nécessitent d'adapter les algorithmes classiques à ce nouveau contexte. En particulier, l'extension des méthodes rang faible au cas tensoriel nécessite l'utilisation d'une décomposition tensorielle orthogonale. Le but de cette thèse est de proposer et d'étudier des algorithmes rang faible pour des modèles tensoriels. Les contributions de cette thèse se concentrent autour de trois axes. Un premier aspect concerne le calcul des performances théoriques d'un algorithme MUSIC tensoriel basé sur la Higher Order Singular Value Decomposition (HOSVD) et appliqué à un modèle de sources polarisées. La deuxième partie concerne le développement de filtres rang faible et de détecteurs rang faible dans un contexte tensoriel. Ce travail s'appuie sur une nouvelle définition de tenseur rang faible et sur une nouvelle décomposition tensorielle associée : l'Alternative Unfolding HOSVD (AU-HOSVD). La dernière partie de ce travail illustre l'intérêt de l'approche tensorielle basée sur l'AU-HOSVD, en appliquant ces algorithmes à configuration radar particulière: le Traitement Spatio-Temporel Adaptatif ou Space-Time Adaptive Process (STAP). / Most of statistical signal processing algorithms, are based on the use of signal covariance matrix. In practical cases this matrix is unknown and is estimated from samples. The adaptive versions of the algorithms can then be applied, replacing the actual covariance matrix by its estimate. These algorithms present a major drawback: they require a large number of samples in order to obtain good results. If the covariance matrix is low-rank structured, its eigenbasis may be separated in two orthogonal subspaces. Thanks to the LR approximation, orthogonal projectors onto theses subspaces may be used instead of the noise CM in processes, leading to low-rank algorithms. The adaptive versions of these algorithms achieve similar performance to classic classic ones with less samples. Furthermore, the current increase in the size of the data strengthens the relevance of this type of method. However, this increase may often be associated with an increase of the dimension of the system, leading to multidimensional samples. Such multidimensional data may be processed by two approaches: the vectorial one and the tensorial one. The vectorial approach consists in unfolding the data into vectors and applying the traditional algorithms. These operations are not lossless since they involve a loss of structure. Several issues may arise from this loss: decrease of performance and/or lack of robustness. The tensorial approach relies on multilinear algebra, which provides a good framework to exploit these data and preserve their structure information. In this context, data are represented as multidimensional arrays called tensor. Nevertheless, generalizing vectorial-based algorithms to the multilinear algebra framework is not a trivial task. In particular, the extension of low-rank algorithm to tensor context implies to choose a tensor decomposition in order to estimate the signal and noise subspaces. The purpose of this thesis is to derive and study tensor low-rank algorithms. This work is divided into three parts. The first part deals with the derivation of theoretical performance of a tensor MUSIC algorithm based on Higher Order Singular Value Decomposition (HOSVD) and its application to a polarized source model. The second part concerns the derivation of tensor low-rank filters and detectors in a general low-rank tensor context. This work is based on a new definition of tensor rank and a new orthogonal tensor decomposition : the Alternative Unfolding HOSVD (AU-HOSVD). In the last part, these algorithms are applied to a particular radar configuration : the Space-Time Adaptive Process (STAP). This application illustrates the interest of tensor approach and algorithms based on AU-HOSVD.
33

Real Time Characterisation of the Mobile Multipath Channel

Teal, Paul D, p.teal@irl.cri.nz January 2002 (has links)
In this thesis a new approach for characterisation of digital mobile radio channels is investigated. The new approach is based on recognition of the fact that while the fading which is characteristic of the mobile radio channel is very rapid, the processes underlying this fading may vary much more slowly. The comparative stability of these underlying processes has not been exploited in system designs to date. Channel models are proposed which take account of the stability of the channel. Estimators for the parameters of the models are proposed, and their performance is analysed theoretically and by simulation and measurement. Bounds are derived for the extent to which the mobile channel can be predicted, and the critical factors which define these bounds are identified. Two main applications arise for these channel models. The first is the possibility of prediction of the overall system performance. This may be used to avoid channel fading (for instance by change of frequency), or compensate for it (by change of the signal rate or by power control). The second application is in channel equalisation. An equaliser based on a model which has parameters varying only very slowly can offer improved performance especially in the case of channels which appear to be varying so rapidly that the convergence rate of an equaliser based on the conventional model is not adequate. The first of these applications is explored, and a relationship is derived between the channel impulse response and the performance of a broadband system.
34

Performance bounds in terms of estimation and resolution and applications in array processing

Tran, Nguyen Duy 24 September 2012 (has links) (PDF)
This manuscript concerns the performance analysis in signal processing and consists into two parts : First, we study the lower bounds in characterizing and predicting the estimation performance in terms of mean square error (MSE). The lower bounds on the MSE give the minimum variance that an estimator can expect to achieve and it can be divided into two categories depending on the parameter assumption: the so-called deterministic bounds dealing with the deterministic unknown parameters, and the so-called Bayesian bounds dealing with the random unknown parameter. Particularly, we derive the closed-form expressions of the lower bounds for two applications in two different fields: (i) The first one is the target localization using the multiple-input multiple-output (MIMO) radar in which we derive the lower bounds in the contexts with and without modeling errors, respectively. (ii) The other one is the pulse phase estimation of X-ray pulsars which is a potential solution for autonomous deep space navigation. In this application, we show the potential universality of lower bounds to tackle problems with parameterized probability density function (pdf) different from classical Gaussian pdf since in X-ray pulse phase estimation, observations are modeled with a Poisson distribution. Second, we study the statistical resolution limit (SRL) which is the minimal distance in terms of the parameter of interest between two signals allowing to correctly separate/estimate the parameters of interest. More precisely, we derive the SRL in two contexts: array processing and MIMO radar by using two approaches based on the estimation theory and information theory. We also present in this thesis the usefulness of SRL in optimizing the array system.
35

Spectral Analysis of Nonuniformly Sampled Data and Applications

Babu, Prabhu January 2012 (has links)
Signal acquisition, signal reconstruction and analysis of spectrum of the signal are the three most important steps in signal processing and they are found in almost all of the modern day hardware. In most of the signal processing hardware, the signal of interest is sampled at uniform intervals satisfying some conditions like Nyquist rate. However, in some cases the privilege of having uniformly sampled data is lost due to some constraints on the hardware resources. In this thesis an important problem of signal reconstruction and spectral analysis from nonuniformly sampled data is addressed and a variety of methods are presented. The proposed methods are tested via numerical experiments on both artificial and real-life data sets. The thesis starts with a brief review of methods available in the literature for signal reconstruction and spectral analysis from non uniformly sampled data. The methods discussed in the thesis are classified into two broad categories - dense and sparse methods, the classification is based on the kind of spectra for which they are applicable. Under dense spectral methods the main contribution of the thesis is a non-parametric approach named LIMES, which recovers the smooth spectrum from non uniformly sampled data. Apart from recovering the spectrum, LIMES also gives an estimate of the covariance matrix. Under sparse methods the two main contributions are methods named SPICE and LIKES - both of them are user parameter free sparse estimation methods applicable for line spectral estimation. The other important contributions are extensions of SPICE and LIKES to multivariate time series and array processing models, and a solution to the grid selection problem in sparse estimation of spectral-line parameters. The third and final part of the thesis contains applications of the methods discussed in the thesis to the problem of radial velocity data analysis for exoplanet detection. Apart from the exoplanet application, an application based on Sudoku, which is related to sparse parameter estimation, is also discussed.
36

Détection et localisation de cible en guide d'onde : application au concept de barrière acoustique à l'échelle du laboratoire / Detection and localization of target in shallow water in the framework of the acoustic barrier problem at the laboratory scale

Marandet, Christian 21 October 2011 (has links)
Cette thèse démontre expérimentalement à l'échelle du laboratoire la détection et la localisation, en transmission, d'une cible de taille de la longueur d'onde. La configuration expérimentale correspond à un guide d'ondes ultrasonique limité par deux réseaux émetteur-récepteur. Deux réseaux coplanaires enregistrent dans le domaine temporel la matrice de transfert du guide d'ondes entre chaque couple émetteur-récepteur. En invoquant le principe de réciprocité, un algorithme de Double Formation de Voies est simultanément exécuté sur les réseaux émetteur et récepteur. Ce traitement d'antennes permet de projeter les échos acoustiques plusieurs fois réverbérés en un ensemble de rayons acoustiques, qui sont définis par angles leurs angles d'émission et de réception. La comparaison réalisée entre l'amplitude de chaque rayons acoustique avec et sans cible dans le guide d'onde permet, par effet d'ombre, de détecter de la cible. La localisation est réalisée à travers la résolution d'un problème inverse en utilisant les rayons acoustiques extraits de la double formation de voies. L'utilisation de noyau de sensibilité utilisant le phénomène de diffraction pour chaque rayon acoustique fournit la localisation et une signature de la cible. Des résultats expérimentaux sont présentés en présence de vagues en surface. L'utilisation de l'effet Larsen dans la cadre de la barrière acoustique est également envisagée pour son extrême sensibilité aux variations du milieu. / This thesis demonstrates experimentally at the laboratory scale the detection and localization, in transmission, of a wavelength-sized target in a shallow ultrasonic waveguide between two source-receiver arrays in the framework of the acoustic barrier problem. Two coplanar arrays record in the time-domain the transfer matrix of the waveguide between each pair of source-receiver transducers. Invoking the reciprocity principle, a time-domain double-beam-forming algorithm is simultaneously performed on the source and receiver arrays. This array processing projects the multireverberated acoustic echoes into an equivalent set of eigenray, which are defined by their launch and arrival angles. Comparison is made between the amplitude of each eigenray without and with a target for detection in the waveguide. Localization is performed though inversion problem using all of the eigenrays extracted from double beamforming. The use of the diffraction-based sensitivity kernel for each eigenray provides both the localization and the signature of the target. Experimental results are shown in the presence of surface waves. The use of the acoustical feedback in frame of the acoustic barrier problem is also considered, for its extreme sensibility to medium variation.
37

Traitements adaptés aux antennes linéaires horizontales pour la discrimination en immersion de sources Ultra Basse Fréquence / Depth discrimination of ultra-low-frequency acoustic sources with a horizontal line array

Conan, Ewen 26 September 2017 (has links)
Les travaux présentés s'intéressent à la discrimination en immersion d'une source acoustique sous-marine monochromatique ultra basse fréquence (UBF, 0-500 Hz) à l'aide d'une antenne horizontale d'hydrophones. La discrimination en immersion consiste à déterminer si un signal reçu a été émis à proximité de la surface ou par une source immergée. Cette problématique est particulièrement intéressante pour la lutte sous-marine (discrimination entre bâtiments de surface et sous-marins) ou la biologie marine (discrimination entre espèces vocalement actives à la surface et en profondeur). Le champ acoustique généré par une source UBF peut être décomposé en modes, dont les caractéristiques dépendent de l'environnement et de la position de la source. Cette propagation modale est source de dispersion modale : les différents modes se propagent à différentes vitesses. Cela empêche d'utiliser les techniques classiques de traitement d'antenne. Cependant, l'antenne horizontale peut être utilisée comme un filtre spatial pour estimer les propriétés des différents modes : on parle alors de filtrage modal. Si l'antenne est suffisamment longue, les modes sont résolus et les modes filtrés peuvent servir à localiser la source (matched-mode processing). Dans le cas d'une antenne trop courte, les modes sont mal filtrés et la localisation est impossible. Nous cherchons donc une information moins précise mais plus robuste sur la position de la source, d'où le problème de la discrimination en immersion.Dans ces travaux, nous cherchons à exploiter les modes mal filtrés pour prendre une décision sur le caractère immergé ou non de la source. Nous proposons de baser cette décision sur la valeur estimée du taux d'énergie piégée, i.e. la proportion de l'énergie acoustique qui est portée par les modes piégés. Le problème de la discrimination est alors posé comme un test d'hypothèses binaire sur la profondeur de la source. Cette formulation physique du problème permet d'utiliser des méthodes de Monte Carlo pour prédire, à l'aide de simulations, les performances en discrimination dans un contexte donné. Cela permet de comparer diverses méthodes d'estimation du taux d'énergie piégée, et surtout de choisir un seuil auquel comparer ce taux pour décider si la source est en surface ou immergée.La méthode développée pendant la thèse est validée sur des données expérimentales marines. Les résultats alors obtenus sont cohérents avec les conclusions tirées des simulations. La méthode proposée permet notamment d'identifier avec succès une source de surface (le bruit d'un navire en déplacement) ainsi qu'une source immergée (une source UBF tractée à 30 m de profondeur), à l'aide d'une antenne horizontale de 360 m. / This work focuses on acoustic source depth discrimination in the ultra-low frequency range (ULF, 0-500 Hz), using a horizontal line array. Depth discrimination is a binary classification problem, aiming to evaluate whether a received signal has been emitted by a source near the surface or by a submerged one. This could serve applications such as anti-submarine warfare or marine biology.The acoustic field generated by a ULF source can be described as a sum of modes, which properties depend on environment and source location. This modal propagation leads to modal dispersion: the different modes propagate at different velocities. This forbid the use of classical beamforming schemes. However, the horizontal array can be used as a spatial filter to estimate the properties of the modes: this is modal filtering. With a sufficient array length, modes are resolved, and the filtered modes can be used to localise the source using matched-mode processing. If the array is too short, the poorly-filtered modes cannot be used for localisation. Therefore, we are looking for a less precise but more robust information on source location, which leads to source depth discrimination.In this work, the poorly-filtered modes are used to decide whether the source is near the surface or submerged. Because some of the modes (the "trapped modes") are weakly excited by a surface source, we propose this decision relies on the estimation of the trapped energy ratio, i.e. the ratio of acoustic energy borne by trapped modes to the total acoustic energy. The problem of depth discrimination is then formulated as a binary hypothesis test on source depth. This physical formulation allows using Monte-Carlo methods and simulations to predict performance in a given context. This enables comparison between several estimators of the trapped energy ratio and the choice of a relevant threshold which this ratio is compared to in order to decide between the two hypotheses. The approach developped in the manuscript is validated by its application to marine experimental data. The results are consistent with the conclusions drawn from simulations. The proposed method enables the succesfull identification of both a surface source (the noise of a travelling ship) and a submerged source (a ULF source towed 30 m below the surface), using a 360-m horizontal array.
38

Highly Robust and Efficient Estimators of Multivariate Location and Covariance with Applications to Array Processing and Financial Portfolio Optimization

Fishbone, Justin Adam 21 December 2021 (has links)
Throughout stochastic data processing fields, mean and covariance matrices are commonly employed for purposes such as standardizing multivariate data through decorrelation. For practical applications, these matrices are usually estimated, and often, the data used for these estimates are non-Gaussian or may be corrupted by outliers or impulsive noise. To address this, robust estimators should be employed. However, in signal processing, where complex-valued data are common, the robust estimation techniques currently employed, such as M-estimators, provide limited robustness in the multivariate case. For this reason, this dissertation extends, to the complex-valued domain, the high-breakdown-point class of multivariate estimators called S-estimators. This dissertation defines S-estimators in the complex-valued context, and it defines their properties for complex-valued data. One major shortcoming of the leading high-breakdown-point multivariate estimators, such as the Rocke S-estimator and the smoothed hard rejection MM-estimator, is that they lack statistical efficiency at non-Gaussian distributions, which are common with real-world applications. This dissertation proposes a new tunable S-estimator, termed the Sq-estimator, for the general class of elliptically symmetric distributions—a class containing many common families such as the multivariate Gaussian, K-, W-, t-, Cauchy, Laplace, hyperbolic, variance gamma, and normal inverse Gaussian distributions. This dissertation demonstrates the diverse applicability and performance benefits of the Sq-estimator through theoretical analysis, empirical simulation, and the processing of real-world data. Through analytical and empirical means, the Sq-estimator is shown to generally provide higher maximum efficiency than the leading maximum-breakdown estimators, and it is also shown to generally be more stable with respect to initial conditions. To illustrate the theoretical benefits of the Sq for complex-valued applications, the efficiencies and influence functions of adaptive minimum variance distortionless response (MVDR) beamformers based on S- and M-estimators are compared. To illustrate the finite-sample performance benefits of the Sq-estimator, empirical simulation results of multiple signal classification (MUSIC) direction-of-arrival estimation are explored. Additionally, the optimal investment of real-world stock data is used to show the practical performance benefits of the Sq-estimator with respect to robustness to extreme events, estimation efficiency, and prediction performance. / Doctor of Philosophy / Throughout stochastic processing fields, mean and covariance matrices are commonly employed for purposes such as standardizing multivariate data through decorrelation. For practical applications, these matrices are usually estimated, and often, the data used for these estimates are non-normal or may be corrupted by outliers or large sporadic noise. To address this, estimators should be employed that are robust to these conditions. However, in signal processing, where complex-valued data are common, the robust estimation techniques currently employed provide limited robustness in the multivariate case. For this reason, this dissertation extends, to the complex-valued domain, the highly robust class of multivariate estimators called S-estimators. This dissertation defines S-estimators in the complex-valued context, and it defines their properties for complex-valued data. One major shortcoming of the leading highly robust multivariate estimators is that they may require unreasonably large numbers of samples (i.e. they may have low statistical efficiency) in order to provide good estimates at non-normal distributions, which are common with real-world applications. This dissertation proposes a new tunable S-estimator, termed the Sq-estimator, for the general class of elliptically symmetric distributions—a class containing many common families such as the multivariate Gaussian, K-, W-, t-, Cauchy, Laplace, hyperbolic, variance gamma, and normal inverse Gaussian distributions. This dissertation demonstrates the diverse applicability and performance benefits of the Sq-estimator through theoretical analysis, empirical simulation, and the processing of real-world data. Through analytical and empirical means, the Sq-estimator is shown to generally provide higher maximum efficiency than the leading highly robust estimators, and its solutions are also shown to generally be less sensitive to initial conditions. To illustrate the theoretical benefits of the Sq-estimator for complex-valued applications, the statistical efficiencies and robustness of adaptive beamformers based on various estimators are compared. To illustrate the finite-sample performance benefits of the Sq-estimator, empirical simulation results of signal direction-of-arrival estimation are explored. Additionally, the optimal investment of real-world stock data is used to show the practical performance benefits of the Sq-estimator with respect to robustness to extreme events, estimation efficiency, and prediction performance.
39

Outils statistiques pour le positionnement optimal de capteurs dans le contexte de la localisation de sources / Statistical tool for the array geometry optimization in the context of the sources localization

Vu, Dinh Thang 19 October 2011 (has links)
Cette thèse porte sur l’étude du positionnement optimale des réseaux de capteurs pour la localisation de sources. Nous avons étudié deux approches: l’approche basée sur les performances de l’estimation en termes d’erreur quadratique moyenne et l’approche basée sur le seuil statistique de résolution (SSR).Pour le première approche, nous avons considéré les bornes inférieures de l’erreur quadratique moyenne qui sont utilisés généralement pour évaluer la performance d’estimation indépendamment du type d’estimateur considéré. Nous avons étudié deux types de bornes: la borne Cramér-Rao (BCR) pour le modèle où les paramètres sont supposés déterministes et la borne Weiss-Weinstein (BWW) pour le modèle où les paramètres sont supposés aléatoires. Nous avons dérivé les expressions analytiques de ces bornes pour développer des outils statistiques afin d’optimiser la géométrie des réseaux de capteurs. Par rapport à la BCR, la borne BWW peut capturer le décrochement de l’EQM des estimateurs dans la zone non-asymptotique. De plus, les expressions analytiques de la BWW pour un modèle Gaussien général à moyenne paramétré ou à covariance matrice paramétré sont donnés explicitement. Basé sur ces expressions analytiques, nous avons étudié l’impact de la géométrie des réseaux de capteurs sur les performances d’estimation en utilisant les réseaux de capteurs 3D et 2D pour deux modèles des observations concernant les signaux sources: (i) le modèle déterministe et (ii) le modèle stochastique. Nous en avons ensuite déduit des conditions concernant les propriétés d’isotropie et de découplage.Pour la deuxième approche, nous avons considéré le seuil statistique de résolution qui caractérise la séparation minimale entre les deux sources. Dans cette thèse, nous avons étudié le SSR pour le contexte Bayésien moins étudié dans la littérature. Nous avons introduit un modèle des observations linéarisé basé sur le critère de probabilité d’erreur minimale. Ensuite, nous avons présenté deux approches Bayésiennes pour le SSR, l’une basée sur la théorie de l’information et l’autre basée sur la théorie de la détection. Ces approches pourront être utilisée pour améliorer la capacité de résolution des systèmes. / This thesis deals with the array geometry optimization problem in the context of sources localization. We have considered two approaches for the array geometry optimization: the performance estimation in terms of mean square error approach and the statistical resolution limit (SRL) approach. In the first approach, the lower bounds on the mean square error which are usually used in array processing to evaluate the estimation performance independently of the considered estimator have been considered. We have investigated two kinds of lower bounds: the well-known Cramér-Rao bound (CRB) for the deterministic model in which the parameters are assumed to be deterministic, and the Weiss-Weinstein bound (WWB) which is less studied, for the Bayesian model, in which, the parameters are assumed to be random with some prior distributions. We have proposed closed-form expressions of these bounds, which can be used as a statistical tool for array geometry design. Compared to the CRB, the WWB can predict the threshold effect of the MSE in the non-asymptotic area. Moreover, the closed-form expressions of the WWB proposed for a general Gaussian model with parameterized mean or parameterized covariance matrix can also be useful for other problems. Based on these closed-form expressions, the 3D array geometry and the classical planar array geometry have been investigated under (i) the conditional observation model in which the source signal is modeled as a deterministic sequence and under (ii) the unconditional observation model in which the source signal is modeled as a Gaussian random process. Conditions concerning the isotropic and uncoupling properties were then derived.In the second approach, we have considered the statistical resolution limit which characterizes the minimal separation between the two closed spaced sources which still allows to determine correctly the number of sources. In this thesis, we are interested in the SRL in the Bayesian context which is less studied in the literature. Based on the linearized observation model with the minimum probability of error, we have introduced the two Bayesian approaches of the SRL based on the detection and information theories which could lead to some interesting tools for the system design.
40

Performance bounds in terms of estimation and resolution and applications in array processing / Performances limites en termes d’estimation et de résolution et applications aux traitements d’antennes

Tran, Nguyen Duy 24 September 2012 (has links)
Cette thèse porte sur l'analyse des performances en traitement du signal et se compose de deux parties: Premièrement, nous étudions les bornes inférieures dans la caractérisation et la prédiction des performances en termes d'erreur quadratique moyenne (EQM). Les bornes inférieures de l'EQM donne la variance minimale qu'un estimateur peut atteindre et peuvent être divisées en deux catégories: les bornes déterministes pour le modèle où les paramètres sont supposés déterministes (mais inconnus), et les bornes Bayésiennes pour le modèle où les paramètres sont supposés aléatoires. En particulier, nous dérivons les expressions analytiques de ces bornes pour deux applications différentes: (i) La première est la localisation des sources en utilisant un radar multiple-input multiple-output (MIMO). Nous considérons les bornes inférieures dans deux contextes c'est-à-dire avec ou sans erreurs de modèle. (ii) La deuxième est l'estimation de phase d'impulsion de pulsars à rayon X qui est une solution potentielle pour la navigation autonome dans l'espace. Pour cette application, nous avons calculé plusieurs bornes inférieures de l'EQM dans le contexte de données modélisées par une loi de Poisson (complétant ainsi les travaux disponibles dans la littérature où les données sont modélisées par une loi gaussienne). Deuxièmement, nous étudions le seuil statistique de résolution limite (SRL), qui est la distance minimale en termes des paramètres d'intérêts entre les deux signaux permettant de séparer / estimer correctement les paramètres d'intérêt. Plus précisément, nous dérivons le SRL dans deux contextes: le traitement d'antenne et le radar MIMO en utilisant deux approches basées sur la théorie de l'estimation et sur la théorie de l'information. Finalement, nous proposons des expressions compactes du SRL dans le cas d'erreurs de modèle. / This manuscript concerns the performance analysis in signal processing and consists into two parts : First, we study the lower bounds in characterizing and predicting the estimation performance in terms of mean square error (MSE). The lower bounds on the MSE give the minimum variance that an estimator can expect to achieve and it can be divided into two categories depending on the parameter assumption: the so-called deterministic bounds dealing with the deterministic unknown parameters, and the so-called Bayesian bounds dealing with the random unknown parameter. Particularly, we derive the closed-form expressions of the lower bounds for two applications in two different fields: (i) The first one is the target localization using the multiple-input multiple-output (MIMO) radar in which we derive the lower bounds in the contexts with and without modeling errors, respectively. (ii) The other one is the pulse phase estimation of X-ray pulsars which is a potential solution for autonomous deep space navigation. In this application, we show the potential universality of lower bounds to tackle problems with parameterized probability density function (pdf) different from classical Gaussian pdf since in X-ray pulse phase estimation, observations are modeled with a Poisson distribution. Second, we study the statistical resolution limit (SRL) which is the minimal distance in terms of the parameter of interest between two signals allowing to correctly separate/estimate the parameters of interest. More precisely, we derive the SRL in two contexts: array processing and MIMO radar by using two approaches based on the estimation theory and information theory. We also present in this thesis the usefulness of SRL in optimizing the array system.

Page generated in 0.0675 seconds