• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Outils statistiques pour le positionnement optimal de capteurs dans le contexte de la localisation de sources

Vu, Dinh Thang 19 October 2011 (has links) (PDF)
Cette thèse porte sur l'étude du positionnement optimale des réseaux de capteurs pour la localisation de sources. Nous avons étudié deux approches: l'approche basée sur les performances de l'estimation en termes d'erreur quadratique moyenne et l'approche basée sur le seuil statistique de résolution (SSR).Pour le première approche, nous avons considéré les bornes inférieures de l'erreur quadratique moyenne qui sont utilisés généralement pour évaluer la performance d'estimation indépendamment du type d'estimateur considéré. Nous avons étudié deux types de bornes: la borne Cramér-Rao (BCR) pour le modèle où les paramètres sont supposés déterministes et la borne Weiss-Weinstein (BWW) pour le modèle où les paramètres sont supposés aléatoires. Nous avons dérivé les expressions analytiques de ces bornes pour développer des outils statistiques afin d'optimiser la géométrie des réseaux de capteurs. Par rapport à la BCR, la borne BWW peut capturer le décrochement de l'EQM des estimateurs dans la zone non-asymptotique. De plus, les expressions analytiques de la BWW pour un modèle Gaussien général à moyenne paramétré ou à covariance matrice paramétré sont donnés explicitement. Basé sur ces expressions analytiques, nous avons étudié l'impact de la géométrie des réseaux de capteurs sur les performances d'estimation en utilisant les réseaux de capteurs 3D et 2D pour deux modèles des observations concernant les signaux sources: (i) le modèle déterministe et (ii) le modèle stochastique. Nous en avons ensuite déduit des conditions concernant les propriétés d'isotropie et de découplage.Pour la deuxième approche, nous avons considéré le seuil statistique de résolution qui caractérise la séparation minimale entre les deux sources. Dans cette thèse, nous avons étudié le SSR pour le contexte Bayésien moins étudié dans la littérature. Nous avons introduit un modèle des observations linéarisé basé sur le critère de probabilité d'erreur minimale. Ensuite, nous avons présenté deux approches Bayésiennes pour le SSR, l'une basée sur la théorie de l'information et l'autre basée sur la théorie de la détection. Ces approches pourront être utilisée pour améliorer la capacité de résolution des systèmes.
2

Outils statistiques pour le positionnement optimal de capteurs dans le contexte de la localisation de sources / Statistical tool for the array geometry optimization in the context of the sources localization

Vu, Dinh Thang 19 October 2011 (has links)
Cette thèse porte sur l’étude du positionnement optimale des réseaux de capteurs pour la localisation de sources. Nous avons étudié deux approches: l’approche basée sur les performances de l’estimation en termes d’erreur quadratique moyenne et l’approche basée sur le seuil statistique de résolution (SSR).Pour le première approche, nous avons considéré les bornes inférieures de l’erreur quadratique moyenne qui sont utilisés généralement pour évaluer la performance d’estimation indépendamment du type d’estimateur considéré. Nous avons étudié deux types de bornes: la borne Cramér-Rao (BCR) pour le modèle où les paramètres sont supposés déterministes et la borne Weiss-Weinstein (BWW) pour le modèle où les paramètres sont supposés aléatoires. Nous avons dérivé les expressions analytiques de ces bornes pour développer des outils statistiques afin d’optimiser la géométrie des réseaux de capteurs. Par rapport à la BCR, la borne BWW peut capturer le décrochement de l’EQM des estimateurs dans la zone non-asymptotique. De plus, les expressions analytiques de la BWW pour un modèle Gaussien général à moyenne paramétré ou à covariance matrice paramétré sont donnés explicitement. Basé sur ces expressions analytiques, nous avons étudié l’impact de la géométrie des réseaux de capteurs sur les performances d’estimation en utilisant les réseaux de capteurs 3D et 2D pour deux modèles des observations concernant les signaux sources: (i) le modèle déterministe et (ii) le modèle stochastique. Nous en avons ensuite déduit des conditions concernant les propriétés d’isotropie et de découplage.Pour la deuxième approche, nous avons considéré le seuil statistique de résolution qui caractérise la séparation minimale entre les deux sources. Dans cette thèse, nous avons étudié le SSR pour le contexte Bayésien moins étudié dans la littérature. Nous avons introduit un modèle des observations linéarisé basé sur le critère de probabilité d’erreur minimale. Ensuite, nous avons présenté deux approches Bayésiennes pour le SSR, l’une basée sur la théorie de l’information et l’autre basée sur la théorie de la détection. Ces approches pourront être utilisée pour améliorer la capacité de résolution des systèmes. / This thesis deals with the array geometry optimization problem in the context of sources localization. We have considered two approaches for the array geometry optimization: the performance estimation in terms of mean square error approach and the statistical resolution limit (SRL) approach. In the first approach, the lower bounds on the mean square error which are usually used in array processing to evaluate the estimation performance independently of the considered estimator have been considered. We have investigated two kinds of lower bounds: the well-known Cramér-Rao bound (CRB) for the deterministic model in which the parameters are assumed to be deterministic, and the Weiss-Weinstein bound (WWB) which is less studied, for the Bayesian model, in which, the parameters are assumed to be random with some prior distributions. We have proposed closed-form expressions of these bounds, which can be used as a statistical tool for array geometry design. Compared to the CRB, the WWB can predict the threshold effect of the MSE in the non-asymptotic area. Moreover, the closed-form expressions of the WWB proposed for a general Gaussian model with parameterized mean or parameterized covariance matrix can also be useful for other problems. Based on these closed-form expressions, the 3D array geometry and the classical planar array geometry have been investigated under (i) the conditional observation model in which the source signal is modeled as a deterministic sequence and under (ii) the unconditional observation model in which the source signal is modeled as a Gaussian random process. Conditions concerning the isotropic and uncoupling properties were then derived.In the second approach, we have considered the statistical resolution limit which characterizes the minimal separation between the two closed spaced sources which still allows to determine correctly the number of sources. In this thesis, we are interested in the SRL in the Bayesian context which is less studied in the literature. Based on the linearized observation model with the minimum probability of error, we have introduced the two Bayesian approaches of the SRL based on the detection and information theories which could lead to some interesting tools for the system design.
3

Performance bounds in terms of estimation and resolution and applications in array processing / Performances limites en termes d’estimation et de résolution et applications aux traitements d’antennes

Tran, Nguyen Duy 24 September 2012 (has links)
Cette thèse porte sur l'analyse des performances en traitement du signal et se compose de deux parties: Premièrement, nous étudions les bornes inférieures dans la caractérisation et la prédiction des performances en termes d'erreur quadratique moyenne (EQM). Les bornes inférieures de l'EQM donne la variance minimale qu'un estimateur peut atteindre et peuvent être divisées en deux catégories: les bornes déterministes pour le modèle où les paramètres sont supposés déterministes (mais inconnus), et les bornes Bayésiennes pour le modèle où les paramètres sont supposés aléatoires. En particulier, nous dérivons les expressions analytiques de ces bornes pour deux applications différentes: (i) La première est la localisation des sources en utilisant un radar multiple-input multiple-output (MIMO). Nous considérons les bornes inférieures dans deux contextes c'est-à-dire avec ou sans erreurs de modèle. (ii) La deuxième est l'estimation de phase d'impulsion de pulsars à rayon X qui est une solution potentielle pour la navigation autonome dans l'espace. Pour cette application, nous avons calculé plusieurs bornes inférieures de l'EQM dans le contexte de données modélisées par une loi de Poisson (complétant ainsi les travaux disponibles dans la littérature où les données sont modélisées par une loi gaussienne). Deuxièmement, nous étudions le seuil statistique de résolution limite (SRL), qui est la distance minimale en termes des paramètres d'intérêts entre les deux signaux permettant de séparer / estimer correctement les paramètres d'intérêt. Plus précisément, nous dérivons le SRL dans deux contextes: le traitement d'antenne et le radar MIMO en utilisant deux approches basées sur la théorie de l'estimation et sur la théorie de l'information. Finalement, nous proposons des expressions compactes du SRL dans le cas d'erreurs de modèle. / This manuscript concerns the performance analysis in signal processing and consists into two parts : First, we study the lower bounds in characterizing and predicting the estimation performance in terms of mean square error (MSE). The lower bounds on the MSE give the minimum variance that an estimator can expect to achieve and it can be divided into two categories depending on the parameter assumption: the so-called deterministic bounds dealing with the deterministic unknown parameters, and the so-called Bayesian bounds dealing with the random unknown parameter. Particularly, we derive the closed-form expressions of the lower bounds for two applications in two different fields: (i) The first one is the target localization using the multiple-input multiple-output (MIMO) radar in which we derive the lower bounds in the contexts with and without modeling errors, respectively. (ii) The other one is the pulse phase estimation of X-ray pulsars which is a potential solution for autonomous deep space navigation. In this application, we show the potential universality of lower bounds to tackle problems with parameterized probability density function (pdf) different from classical Gaussian pdf since in X-ray pulse phase estimation, observations are modeled with a Poisson distribution. Second, we study the statistical resolution limit (SRL) which is the minimal distance in terms of the parameter of interest between two signals allowing to correctly separate/estimate the parameters of interest. More precisely, we derive the SRL in two contexts: array processing and MIMO radar by using two approaches based on the estimation theory and information theory. We also present in this thesis the usefulness of SRL in optimizing the array system.
4

Analyse de performances en traitement d'antenne. : bornes inférieures de l'erreur quadratique moyenne et seuil de résolution limite

El Korso, Mohammed Nabil, El Korso, Mohammed Nabil 07 July 2011 (has links) (PDF)
Ce manuscrit est dédié à l'analyse de performances en traitement d'antenne pour l'estimation des paramètres d'intérêt à l'aide d'un réseau de capteurs. Il est divisé en deux parties :- Tout d'abord, nous présentons l'étude de certaines bornes inférieures de l'erreur quadratique moyenne liées à la localisation de sources dans le contexte champ proche. Nous utilisons la borne de Cramér-Rao pour l'étude de la zone asymptotique (notamment en terme de rapport signal à bruit avec un nombre fini d'observations). Puis, nous étudions d'autres bornes inférieures de l'erreur quadratique moyenne qui permettent de prévoir le phénomène de décrochement de l'erreur quadratique moyenne des estimateurs (on cite, par exemple, la borne de McAulay-Seidman, la borne de Hammersley-Chapman-Robbins et la borne de Fourier Cramér-Rao).- Deuxièmement, nous nous concentrons sur le concept du seuil statistique de résolution limite, c'est-à-dire, la distance minimale entre deux signaux noyés dans un bruit additif qui permet une "correcte" estimation des paramètres. Nous présentons quelques applications bien connues en traitement d'antenne avant d'étendre les concepts existants au cas de signaux multidimensionnels. Par la suite, nous étudions la validité de notre extension en utilisant un test d'hypothèses binaire. Enfin, nous appliquons notre extension à certains modèles d'observation multidimensionnels
5

Analyse de performances en traitement d'antenne : bornes inférieures de l'erreur quadratique moyenne et seuil de résolution limite / Performance analysis in array signal processing. : lower bounds on the mean square error and statistical resolution limit

El Korso, Mohammed Nabil 07 July 2011 (has links)
Ce manuscrit est dédié à l’analyse de performances en traitement d’antenne pour l’estimation des paramètres d’intérêt à l’aide d’un réseau de capteurs. Il est divisé en deux parties :– Tout d’abord, nous présentons l’étude de certaines bornes inférieures de l’erreur quadratique moyenne liées à la localisation de sources dans le contexte champ proche. Nous utilisons la borne de Cramér-Rao pour l’étude de la zone asymptotique (notamment en terme de rapport signal à bruit avec un nombre fini d’observations). Puis, nous étudions d’autres bornes inférieures de l’erreur quadratique moyenne qui permettent de prévoir le phénomène de décrochement de l’erreur quadratique moyenne des estimateurs (on cite, par exemple, la borne de McAulay-Seidman, la borne de Hammersley-Chapman-Robbins et la borne de Fourier Cramér-Rao).– Deuxièmement, nous nous concentrons sur le concept du seuil statistique de résolution limite, c’est-à-dire, la distance minimale entre deux signaux noyés dans un bruit additif qui permet une ”correcte” estimation des paramètres. Nous présentons quelques applications bien connues en traitement d’antenne avant d’étendre les concepts existants au cas de signaux multidimensionnels. Par la suite, nous étudions la validité de notre extension en utilisant un test d’hypothèses binaire. Enfin, nous appliquons notre extension à certains modèles d’observation multidimensionnels / This manuscript concerns the performance analysis in array signal processing. It can bedivided into two parts :- First, we present the study of some lower bounds on the mean square error related to the source localization in the near eld context. Using the Cramér-Rao bound, we investigate the mean square error of the maximum likelihood estimator w.r.t. the direction of arrivals in the so-called asymptotic area (i.e., for a high signal to noise ratio with a nite number of observations.) Then, using other bounds than the Cramér-Rao bound, we predict the threshold phenomena.- Secondly, we focus on the concept of the statistical resolution limit (i.e., the minimum distance between two closely spaced signals embedded in an additive noise that allows a correct resolvability/parameter estimation.) We de ne and derive the statistical resolution limit using the Cramér-Rao bound and the hypothesis test approaches for the mono-dimensional case. Then, we extend this concept to the multidimensional case. Finally, a generalized likelihood ratio test based framework for the multidimensional statistical resolution limit is given to assess the validity of the proposed extension.

Page generated in 0.1696 seconds