• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 142
  • 26
  • 18
  • 17
  • 9
  • 7
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 284
  • 119
  • 71
  • 67
  • 49
  • 48
  • 43
  • 38
  • 38
  • 33
  • 32
  • 31
  • 30
  • 23
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Le design des programmes : des façons de faire du numérique / Program design : ways of doing digital

Masure, Anthony 10 November 2014 (has links)
Cette thèse interroge le design depuis les pratiques de programmation en montrant qu'elles ne se réduisent pas à une industrie des programmes, qui empêche les inventions de naître tout à fait. Pour cela, elle confronte au sein d'une lecture non linéaire cinq moments de l'histoire du numérique (depuis Vannevar Bush en 1945, dont une traduction inédite est proposée en appendice, jusqu'aux usages contemporains du site web GitHub) à quatre formulations conceptuelles issues d'un corpus philosophique. Le choix d'auteurs qui n'ont pas directement voué leurs réflexions au design (comme Jacques Derrida, Hannah Arendt ou Walter Benjamin) permet de déconstruire un certain nombre de discours entourant la réception des technologies dites nouvelles. Critiquant nombre d'usages faits des notions de conception et de projet et s'appuyant finalement sur Gilbert Simondon, cette thèse s'intéresse à ce qui n'est pas prévisible dans les programmes. Elle soutient cinq axes ou directions pour une recherche dans le champ concerné: décentrer, authentifier, appareiller, traduire et désarticuler. La plausibilité de ces façons de faire du numérique, encore à l'état d'ébauche dans les productions contemporaines, peut intéresser les designers au-delà des spécialistes. Elle est avérée en fin d'ouvrage dans la description d'une fiction curatoriale. / This dissertation questions design through programming practices, showing how they cannot be summed up in program industries which prevent inventions from happening. To this end, it confronts, by a non-linear reading, five periods in the Digital History (since Vannevar Bush in 1945, including a new unpublished translation available as an appendix, to the contemporary use of the website GitHub) with four concepts extracted from a philosophical corpus. The choice of author who have not directly dedicated their writings to Design (such as Jacques Derrida, Hannah Arendt and Walter Benjamin) can deconstruct a number of discourses regarding the arrival of so-called new technologies. After redefining concept and project in design practices and project, and then supported by Gilbert Simondon, this dissertation focuses on what is not predictable in programs. It defends five lines or directions for researches in the relevant field: decentralize, certify, kit or translate and dislocate. The plausibility of these ways to make digital, still in draft form in contemporary productions, may interest designers beyond specialists. A demonstration is made at the end of the dissertation with the description of curatorial fiction.
62

Time resolved single photon imaging in nanometer scale CMOS technology

Richardson, Justin Andrew January 2010 (has links)
Time resolved imaging is concerned with the measurement of photon arrival time. It has a wealth of emerging applications including biomedical uses such as fluorescence lifetime microscopy and positron emission tomography, as well as laser ranging and imaging in three dimensions. The impact of time resolved imaging on human life is significant: it can be used to identify cancerous cells in-vivo, how well new drugs may perform, or to guide a robot around a factory or hospital. Two essential building blocks of a time resolved imaging system are a photon detector capable of sensing single photons, and fast time resolvers that can measure the time of flight of light to picosecond resolution. In order to address these emerging applications, miniaturised, single-chip, integrated arrays of photon detectors and time resolvers must be developed with state of the art performance and low cost. The goal of this research is therefore the design, layout and verification of arrays of low noise Single Photon Avalanche Diodes (SPADs) together with high resolution Time-Digital Converters (TDCs) using an advanced silicon fabrication process. The research reported in this Thesis was carried out as part of the E.U. funded Megaframe FP6 Project. A 32x32 pixel, one million frames per second, time correlated imaging device has been designed, simulated and fabricated using a 130nm CMOS Imaging process from ST Microelectronics. The imager array has been implemented together with required support cells in order to transmit data off chip at high speed as well as providing a means of device control, test and calibration. The fabricated imaging device successfully demonstrates the research objectives. The Thesis presents details of design, simulation and characterisation results of the elements of the Megaframe device which were the author’s own work. Highlights of the results include the smallest and lowest noise SPAD devices yet published for this class of fabrication process and an imaging array capable of recording single photon arrivals every microsecond, with a minimum time resolution of fifty picoseconds and single bit linearity.
63

Radio signal DOA estimation : Implementing radar signal direction estimation on an FPGA.

Patriksson, Alfred January 2019 (has links)
This master’s thesis covers the design and implementation of a monopulse directionof arrival (DOA) estimation algorithm on an FPGA. The goal is to implement a complete system that is capable of estimating the bearing of an incident signal. In order to determine the estimate quality both a theoretical and practical noise analysis of the signal chain is performed. Special focus is placed on the statistical properties of the transformation from I/Q-demodulated signals with correlated noise to a polar representation. The pros and cons for three different methods of calculating received signal phasors are also covered.The system is limited to two receiving channels which constrains this report to a 2D analysis. In addition the used hardware is limited to C-band signals. We show that an FPGA implementation of monopulse techniques is definitely viable and that an SNR higher than ten dB allows for a gaussian approximation of the polar representationof an I/Q signal.
64

Departure processes from MAP/PH/1 queues

Green, David Anthony January 1999 (has links)
A MAP/PH/1 queue is a queue having a Markov arrival process (MAP), and a single server with phase-type (PH -type) distributed service time. This thesis considers the departure process from these type of queues. We use matrix analytic methods, the Jordan canonical form of matrices, non-linear filtering and approximation techniques. The departure process of a queue is important in the analysis of networks of queues, as it may be the arrival process to another queue in the network. If a simple description were to exist for a departure process, the analysis of at least feed-forward networks of these queues would then be analytically tractable. Chapter 1 is an introduction to some of the literature and ideas surrounding the departure process from MAP/PH/1 queues. Chapter 2 sets up the basic notation and establishes some results which are used throughout the thesis. It contains a preliminary consideration of PH -type distributions, PH -renewal processes, MAP s, MAP/PH/1 queues, non-linear filtering and the Jordan canonical form. Chapter 3 is an expansion of "The Output process of an MMPP/M/1 queue", where the question of whether a MAP description can exist for the departure process of a non-trivial MAP/M/1 queue is considered. In a 1994 paper, Olivier and Walrand conjectured that the departure process of a MAP/PH/1 queue is not a MAP unless the queue is a stationary M/M/1 queue. This conjecture was prompted by their claim that the departure process of an MMPP/M/1 queue is not MAP unless the queue is a stationary M/M/1 queue. We show that their proof has an algebraic error, which leaves open the above question of whether the departure process of an MMPP/PH/1 queue is a MAP or not. In Chapter 4, the more fundamental problem of identifying stationary M/M/1 queues in the class of MAP/PH/1 queues is considered. It is essential to be able to determine from its generator when a stationary MAP is a Poisson process. This does not appear to have been discussed in the literature prior to the author's paper, where this deficiency was remedied using ideas from non-linear filtering theory, to give a characterisation as to when a stationary MAP is a Poisson process. Chapter 4 expands upon "When is a MAP Poisson". This investigation of higher order representations of the Poisson process is motivated by first considering when a higher order PH -type distribution is just negative exponential. In Chapter 5, we consider the related question of minimal order representations for PH -type distributions, an issue which has attracted much interest in the literature. A discussion of other authors' ideas is given and these ideas are then inter-related to the work presented in Chapter 4 on the PH -type distributions. The MAP/M/1 queue is then considered in Chapter 6 from the perspective of whether having an exact level and phase independent stationary distribution of the geometric form [Formula - Not available: see pdf version of the abstract] implies that the MAP is Poisson. The answer is in the affirmative for this question, but the converse is not strictly true. Apart from showing the ubiquitous asymptotic form of level and phase independence exhibited by all stable MAP/M/1 queues, we prove that a very large class of stable queues, exhibits what we have termed shift-one level and phase independence. Stable MAP/M/1 queues exhibiting shift-one level and phase independence, are characterised by a stationary distribution of the following form: [Formula - Not Available: see pdf version of the abstract] In Chapter 7, a family of approximations is proposed for the output process of a stationary MAP/PH/1 queue. To check the viability of these approximations, they are used as input to another single server queue. Performance measures for the second server are obtained analytically in both the tandem and approximation cases, thus eliminating the need for simulation to compare results. Comparison of these approximations is also made against other approximation methods in the literature. In Chapter 8, we show that our approximations from Chapter 7 have the property of exactly matching the inter-departure time distribution. Our kth approximation also accurately captures the first k-1 lag-correlation coefficients of the stationary departure process. The proofs of this direct association between lag-correlation coefficients and the level of complexity k are given. / Thesis (Ph.D.)--School of Applied Mathematics, 1999.
65

Optimal prior knowledge-based direction of arrival estimation

Wirfält, Petter, Bouleux, Guillaume, Jansson, Magnus, Stoica, Petre January 2012 (has links)
In certain applications involving direction of arrival (DOA) estimation the operator may have a-priori information on some of the DOAs. This information could refer to a target known to be present at a certain position or to a reflection. In this study, the authors investigate a methodology for array processing that exploits the information on the known DOAs for estimating the unknown DOAs as accurately as possible. Algorithms are presented that can efficiently handle the case of both correlated and uncorrelated sources when the receiver is a uniform linear array. The authors find a major improvement in estimator accuracy in feasible scenarios, and they compare the estimator performance to the corresponding theoretical stochastic Cramer-Rao bounds as well as to the performance of other methods capable of exploiting such prior knowledge. In addition, real data from an ultra-sound array is applied to the investigated estimators. / <p>QC 20130107</p>
66

The Development and Evaluation of a Model of Time-of-arrival Uncertainty

Hooey, Becky 13 April 2010 (has links)
Uncertainty is inherent in complex socio-technical systems such as in aviation, military, and surface transportation domains. An improved understanding of how operators comprehend this uncertainty is critical to the development of operations and technology. Towards the development of a model of time of arrival (TOA) uncertainty, Experiment 1 was conducted to determine how air traffic controllers estimate TOA uncertainty and to identify sources of TOA uncertainty. The resulting model proposed that operators first develop a library of speed and TOA profiles through experience. As they encounter subsequent aircraft, they compare each vehicle’s speed profile to their personal library and apply the associated estimate of TOA uncertainty. To test this model, a normative model was adopted to compare inferences made by human observers to the corresponding inferences that would be made by an optimal observer who had knowledge of the underlying distribution. An experimental platform was developed and implemented in which subjects observed vehicles with variable speeds and then estimated the mean and interval that captured 95% of the speeds and TOAs. Experiments 2 and 3 were then conducted and revealed that subjects overestimated TOA intervals for fast stimuli and underestimated TOA intervals for slow stimuli, particularly when speed variability was high. Subjects underestimated the amount of positive skew of the TOA distribution, particularly in slow/high variability conditions. Experiment 3 also demonstrated that subjects overestimated TOA uncertainty for short distances and underestimated TOA uncertainty for long distances. It was shown that subjects applied a representative heuristic by selecting the trained speed profile that was most similar to the observed vehicle’s profile, and applying the TOA uncertainty estimate of that trained profile. Multiple regression analyses revealed that the task of TOA uncertainty estimation contributed the most to TOA uncertainty estimation error as compared to the tasks of building accurate speed models and identifying the appropriate speed model to apply to a stimulus. Two systematic biases that account for the observed TOA uncertainty estimation errors were revealed: Assumption of symmetry and aversion to extremes. Operational implications in terms of safety and efficiency for the aviation domain are discussed.
67

The Development and Evaluation of a Model of Time-of-arrival Uncertainty

Hooey, Becky 13 April 2010 (has links)
Uncertainty is inherent in complex socio-technical systems such as in aviation, military, and surface transportation domains. An improved understanding of how operators comprehend this uncertainty is critical to the development of operations and technology. Towards the development of a model of time of arrival (TOA) uncertainty, Experiment 1 was conducted to determine how air traffic controllers estimate TOA uncertainty and to identify sources of TOA uncertainty. The resulting model proposed that operators first develop a library of speed and TOA profiles through experience. As they encounter subsequent aircraft, they compare each vehicle’s speed profile to their personal library and apply the associated estimate of TOA uncertainty. To test this model, a normative model was adopted to compare inferences made by human observers to the corresponding inferences that would be made by an optimal observer who had knowledge of the underlying distribution. An experimental platform was developed and implemented in which subjects observed vehicles with variable speeds and then estimated the mean and interval that captured 95% of the speeds and TOAs. Experiments 2 and 3 were then conducted and revealed that subjects overestimated TOA intervals for fast stimuli and underestimated TOA intervals for slow stimuli, particularly when speed variability was high. Subjects underestimated the amount of positive skew of the TOA distribution, particularly in slow/high variability conditions. Experiment 3 also demonstrated that subjects overestimated TOA uncertainty for short distances and underestimated TOA uncertainty for long distances. It was shown that subjects applied a representative heuristic by selecting the trained speed profile that was most similar to the observed vehicle’s profile, and applying the TOA uncertainty estimate of that trained profile. Multiple regression analyses revealed that the task of TOA uncertainty estimation contributed the most to TOA uncertainty estimation error as compared to the tasks of building accurate speed models and identifying the appropriate speed model to apply to a stimulus. Two systematic biases that account for the observed TOA uncertainty estimation errors were revealed: Assumption of symmetry and aversion to extremes. Operational implications in terms of safety and efficiency for the aviation domain are discussed.
68

Investigation of wireless local area network facilitated angle of arrival indoor location

Wong, Carl Monway 11 1900 (has links)
As wireless devices become more common, the ability to position a wireless device has become a topic of importance. Accurate positioning through technologies such as the Global Positioning System is possible for outdoor environments. Indoor environments pose a different challenge, and research continues to position users indoors. Due to the prevalence of wireless local area networks (WLANs) in many indoor spaces, it is prudent to determine their capabilities for the purposes of positioning. Signal strength and time based positioning systems have been studied for WLANs. Direction or angle of arrival (AOA) based positioning will be possible with multiple antenna arrays, such as those included with upcoming devices based on the IEEE 802.11n standard. The potential performance of such a system is evaluated. The positioning performance of such a system depends on the accuracy of the AOA estimation as well as the positioning algorithm. Two different maximum-likelihood (ML) derived algorithms are used to determine the AOA of the mobile user: a specialized simple ML algorithm, and the space- alternating generalized expectation-maximization (SAGE) channel parameter estimation algorithm. The algorithms are used to determine the error in estimating AOAs through the use of real wireless signals captured in an indoor office environment. The statistics of the AOA error are used in a positioning simulation to predict the positioning performance. A least squares (LS) technique as well as the popular extended Kalman filter (EKF) are used to combine the AOAs to determine position. The position simulation shows that AOA- based positioning using WLANs indoors has the potential to position a wireless user with an accuracy of about 2 m. This is comparable to other positioning systems previously developed for WLANs.
69

Development of an Ultra Wide-Band(UWB) Synthetic Aperture Radar (SAR)System for Imaging of Near Field Object

Fayazi, Seyedeh shaghayegh January 2012 (has links)
Ultra-wideband (UWB) technology and its use in imaging and sensing have drawnsignicant interest in the last two decades. Extensive studies have contributed toutilize UWB transient scattering for automated target recognition and imagingpurposes. In this thesis a near-eld UWB synthetic aperture radar (SAR) imagingalgorithm is presented.It is shown with measurements and simulation, that it is possible to reconstruct an imageof an object in the near eld region using UWB technology and SAR imaging algorithm.However the nal SAR image is highly aected by unwanted scattered elds at each pixelusually observed as an image artifact in the nal image. In this study these artifactsare seen as a smile around the main object. Two methods are suggested in this thesiswork to suppress this artifact. The rst method combines the scattered eld informationreceived from both rear and front of the object to reconstruct two separate images, onefrom rear view and one from front view of the object respectively. Since the scatteredelds from behind the object are mirrored, the pixel by pixel multiplication of thesetwo images for objects with simple geometry will cancel the artifact. This method isvery simple and fast applicable to objects with simple geometry. However this methodcannot be used for objects with rather complex geometry and boundaries. Thereforethe Range Point Migration (RPM) method is used along with the global characteristicsof the observed range map to introduce a new artifact rejection method based on thedirectional of arrival (DOA) of scattered elds at each pixel. DOA information can beused to calculate an optimum theta for each antenna. This optimum angle along withthe real physical direction of arrival at each position can produce a weighting factor thatlater can be used to suppress the eect of undesired scattered elds producing the smileshaped artifact. Final results of this study clearly show that the UWB SAR accompaniedwith DOA can produce an image of an object free of undesired artifact from scatteredeld of adjacent antennas.
70

Modelling Framework for Radio Frequency Spatial Measurement

Wiles, Andrew Donald January 2006 (has links)
The main crux of this thesis was to produce a model that was capable of simulating the theoretical performance of different configurations for a spatial measurement system using radio frequency technology. It has been important to study new modalities of spatial measurement since spatial measurement systems are an enabling technology that have allowed for the creation of better medical procedures and techniques, provided valuable data for motion capture in animation and biomechanics, and have improved the quality of manufacturing processes in many industries. However, there has been room for improvement in the functional design and accuracy of spatial measurement systems that will enhance current applications and further develop new applications in medicine, research and industry. <br /><br /> In this thesis, a modelling framework for the investigation of spatial measurement based on radio frequency signals was developed. The simulation framework was designed for the purpose of investigating different position determination algorithms and sensor geomatries. A finite element model using the FEMLAB partial differential equation modelling tool was created for a time-domain model of electromagnetic wave propagation in order to simulate the radio frequency signals travelling from a transmitting source antenna to a set of receiving antenna sensors. Electronic line signals were obtained using a simple receiving infinitesimal dipole model and input into a time difference of arrival localization algorithm. The finite element model results were validated against a set of analytical solutions for the free space case. The accuracy of the localization algorithm was measured against a set of possible applications for a potential radio frequency spatial measurement system design. <br /><br /> It was concluded that the simulation framework was successful should one significant deficiency be corrected in future research endeavours. A phase error was observed in the signals extracted at the receiving antenna locations. This phase error, which can be up to 40°, was attributed to the zeroth order finite elements implemented in the finite element model. This phase error can be corrected in the future if higher order vector elements are introduced into future versions of FEMLAB or via the development of custom finite element analysis software but were not implemented in this thesis due to time constraints. Other improvements were also suggested for future work.

Page generated in 0.0733 seconds