• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 13
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cognitive smart agents for optimising OpenFlow rules in software defined networks

Sabih, Ann Faik January 2017 (has links)
This research provides a robust solution based on artificial intelligence (AI) techniques to overcome the challenges in Software Defined Networks (SDNs) that can jeopardise the overall performance of the network. The proposed approach, presented in the form of an intelligent agent appended to the SDN network, comprises of a new hybrid intelligent mechanism that optimises the performance of SDN based on heuristic optimisation methods under an Artificial Neural Network (ANN) paradigm. Evolutionary optimisation techniques, including Particle Swarm Optimisation (PSO) and Genetic Algorithms (GAs) are deployed to find the best set of inputs that give the maximum performance of an SDN-based network. The ANN model is trained and applied as a predictor of SDN behaviour according to effective traffic parameters. The parameters that were used in this study include round-trip time and throughput, which were obtained from the flow table rules of each switch. A POX controller and OpenFlow switches, which characterise the behaviour of an SDN, have been modelled with three different topologies. Generalisation of the prediction model has been tested with new raw data that were unseen in the training stage. The simulation results show a reasonably good performance of the network in terms of obtaining a Mean Square Error (MSE) that is less than 10−6 [superscript]. Following the attainment of the predicted ANN model, utilisation with PSO and GA optimisers was conducted to achieve the best performance of the SDN-based network. The PSO approach combined with the predicted SDN model was identified as being comparatively better than the GA approach in terms of their performance indices and computational efficiency. Overall, this research demonstrates that building an intelligent agent will enhance the overall performance of the SDN network. Three different SDN topologies have been implemented to study the impact of the proposed approach with the findings demonstrating a reduction in the packets dropped ratio (PDR) by 28-31%. Moreover, the packets sent to the SDN controller were also reduced by 35-36%, depending on the generated traffic. The developed approach minimised the round-trip time (RTT) by 23% and enhanced the throughput by 10%. Finally, in the event where SDN controller fails, the optimised intelligent agent can immediately take over and control of the entire network.
2

Discharge Predictions Using Ann In Sloping Rectangular Channels With Free Overfall

Ozturk, Hayrullah Ugras 01 October 2005 (has links) (PDF)
In recent years, artificial neural networks (ANNs) have been applied to estimate in many areas of hydrology and hydraulic engineering. In this thesis, multilayered feedforward backpropagation algorithm was used to establish for the prediction of unit discharge q (m3/s/m) in a rectangular free overfall. Researchers&rsquo / experimental data were used to train and validate the network with high reliability. First, an appropriate ANN model has been established by considering determination of hidden layer and node numbers related to training function and training epoch number. Then by applying sensitivity analysis, parameters involved in and their effectiveness relatively has been determined in the phenomenon. In the scope of the thesis, there are two case studies. In the first case study, ANN models reliability has been investigated according to the training data clustered and the results are given by comparing to regression analysis. In the second case, ANN models&rsquo / ability in establishing relations with different data clusters is investigated and effectiveness of ANN is scrutinized.
3

Comprehensive fluid saturation study for the Fula North field Muglad Basin, Sudan

Altayeb, Abdalmajid I. H. January 2016 (has links)
>Magister Scientiae - MSc / This study has been conducted to accurately determine fluid saturation within Fula sub-basin reservoirs which is located at the Southern part of the Republic of Sudan. The area is regarded as Shaly Sand Reservoirs. Four deferent shaly sand lithofacies (A, B, C, D) have been identified. Using method based on the Artificial Neural Networks (ANN), the core surrounding facies, within Fula reservoirs were identified. An average shale volume of 0.126 within the studied reservoirs was determined using gamma ray and resistivity logs. While average porosity of 26.7% within the reservoirs was determined using density log and the average core grain density. An average water resistivity of 0.8 Ohm-m was estimated using Pickett plot method. While formation temperature was estimated using the gradient that constrained between surface and bottom hole temperature. Water saturation was determined using Archie model and four shaly sand empirical models, the calculation was constrained within each facies zone to specify a model for each facies, and another approach was used to obtain the water saturation based on Artificial Neural Networks. The net pay was identified for each reservoir by applying cut-offs on permeability 5 mD, porosity 16%, shale volume 0.33, and water saturation 0.65. The gross thickness of the reservoirs ranges from 7.62m to 19.85m and net pay intervals from 4.877m to 19.202m. The study succeeded in establishing water saturation model for the Fula sub-basin based on neural networking which was very consistent with the core data, and hence has been used for net pay determination.
4

Um MÃtodo para localizaÃÃo e estimaÃÃo das caracterÃsticas geotÃcnicas dos solos da regiÃo metropolitana de Fortaleza-Ce para fins de pavimentaÃÃo / A Method for Estimating and Positioning Geotechnical Characteristics of Soil for the Metropolitan Region of Fortaleza, Cearà of Paving Purposes

Antonio Junior Alves Ribeiro 25 April 2013 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Esta investigaÃÃo propÃe o desenvolvimento de um mÃtodo para a localizaÃÃo e prediÃÃo das caracterÃsticas geotÃcnicas dos solos que possa contribuir para o processo da tomada de decisÃo, quanto à sua utilizaÃÃo, para fins de pavimentaÃÃo. Utilizou-se Geoprocessamento e Redes Neurais Artificiais (RNAs) como tÃcnicas de modelagem, bem como variÃveis biofÃsicas e espaciais como explicativas dos fenÃmenos modelados. As caracterÃsticas pesquisadas (pedologia, geologia, geomorfologia, vegetaÃÃo, altimetria e posiÃÃo) se correlacionaram com as variÃveis geotÃcnicas estimadas (classificaÃÃo TRB - Transportation Research Board e CBR - California Bearing Ratio) para solos provenientes da RegiÃo Metropolitana de Fortaleza (RMF). Assim, desenvolveu-se trÃs modelos de RNAs que foram calibrados, validados e testados. Dois desses modelos foram dedicados à geraÃÃo de estimativas de CBR nas energias de compactaÃÃo normal (CBR-N) e intermediÃria (CBR-I). O terceiro modelo foi elaborado para geraÃÃo de estimativas da classificaÃÃo TRB dos solos da RMF. As caracterÃsticas geotÃcnicas estimadas por estes modelos possibilitaram a elaboraÃÃo dos chamados Mapas GeotÃcnicos Neurais, estratificados para previsÃo dos valores de CBR-N, CBR-I e ClassificaÃÃo TRB. Adicionalmente, os mapas produzidos e todas as informaÃÃes da pesquisa foram disponibilizados em um Sistema de InformaÃÃes GeogrÃficas Web (SIG-Web), de forma a possibilitar seu uso em projetos viÃrios e estudos acadÃmicos futuros, tanto para download dos mapas gerados, quanto para geraÃÃo de estimativas para uma Ãrea especÃfica da RMF. AlÃm disso, disponibilizou-se ao SIG-Web um realimentador de pontos geotÃcnicos para permitir uma recalibraÃÃo futura dos modelos na tentativa de melhorar a qualidade das estimativas geradas que atualmente à superior a 90% de taxa de acerto. / This research focuses on the development of a method, aimed to predicting and positioning the geotechnical characteristics of soils that may contribute to the process of decision making of its use for paving purposes. Were used Geoprocessing and Artificial Neural Networks (ANN) modeling techniques, as well as spatial and biophysical variables of the phenomena modeled. The characteristics studied (pedology, geology, geomorphology, vegetation, altimetry and position) were correlated with the estimated geotechnical variables (TRB Classification and CBR) for soils from the metropolitan region of Fortaleza, Cearà (RMF). Three models of ANNs were developed calibrated, validated and tested. Two of these models were dedicated to generating estimates of CBR in the normal (CBR-N) and intermediate (CBR-I) compaction modes. The third model was developed to generate estimates of the geotechnical characteristics of the soils from the RMF Classification TRB. The geotechnical characteristics estimated by these models enabled the preparation of Neural Geotechnical Maps, stratified for values of CBR-N, CBR-I and TRB Classification. The maps produced and all the survey information was made available on a Web Geographic Information System (Webmapping), thus allowing its use in road projects and future academic studies, both to download the maps and to generate estimates for RMF. In addition, provided to the Webmapping a geotechnical receiver points, to allow recalibration of future models in an attempt to improve the quality of the estimates that currently is more than 90% accuracy rate.
5

Prediction of traffic flow in cloud computing at a service provider.

Sekwatlakwatla, Prince 11 1900 (has links)
M. Tech. (Department of Information Technology, Faculty of Applied and Computer Sciences) Vaal University of Technology. / Cloud computing provides improved and simplified IT management and maintenance capabilities through central administration of resources. Companies of all shapes and sizes are adapting to this new technology. Although cloud computing is an attractive concept to the business community, it still has some challenges such as traffic management and traffic prediction that need to be addressed. Most cloud service providers experience traffic congestion. In the absence of effective tools for cloud computing traffic prediction, the allocation of resources to clients will be ineffective thus driving away cloud computing users. This research intends to mitigate the effect of traffic congestion on provision of cloud service by proposing a proactive traffic prediction model that would play an effective role in congestion control and estimation of accurate future resource demand. This will enhance the accuracy of traffic flow prediction in cloud computing by service providers. This research will evaluate to determine the performance between Auto-regressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANN) as prediction tools for cloud computing traffic. These two techniques were tested by using simulation to predict traffic flow per month and per year. The dataset was downloaded data taken from CAIDA database. The two algorithms Auto-Regressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANN) where implemented and tested separately. Experimental results were generated and analyzed to test the effectiveness of the traffic prediction algorithms. Finally, the findings indicated that ARIMA can have 98 % accurate prediction results while ANN produced 89 % accurate prediction results. It was also observed that both models perform better on monthly data as compared to yearly data. This study recommends ARIMA algorithm for data flow prediction in private cloud computing
6

Disaggregation of Electrical Appliances using Non-Intrusive Load Monitoring / Classification des équipements électriques par le monitoring non-intrusif des charges

Bier, Thomas 17 December 2014 (has links)
Cette thèse présente une méthode pour désagréger les appareils électriques dans le profil des bâtiments résidentiels de charge. Au cours des dernières années, la surveillance de l’énergie a obtenu beaucoup de popularité dans un environnement privé et industriel. Avec des algorithmes de la désagrégation, les données mesurées à partir de soi-disant compteurs intelligents peuvent être utilisés pour fournir de plus amples informations de la consommation d’énergie. Une méthode pour recevoir ces données est appelé non-intrusifs charge identification. La majeure partie de la thèse peut être divisée en trois parties. Dans un premier temps, un système de mesure propre a été développé et vérifié. Avec ce système, les ensembles de données réelles peuvent être générés pour le développement et la vérification des algorithmes de désagrégation. La deuxième partie décrit le développement d’un détecteur de flanc. Différentes méthodes sont présentées et évaluées, avec lequel les temps de commutation des appareils peuvent être détectés dans le profil de la charge. La dernière partie décrit un procédé de classification. Différents critères sont utilisés pour la classification. Le classificateur reconnaît et étiquette les appareils individuels de la courbe de charge. Pour les classifications différentes structures de réseaux de neurones artificiels sont comparés. / This thesis presents a method to disaggregate electrical appliances in the load profile of residential buildings. In recent years, energy monitoring has obtained significantly popularity in private and industrial environment. With algorithms of the disaggregation, the measured data from so-called smart meters can be used to provide more information of the energy usage. One method to receive these data is called non-intrusive appliance load monitoring.The main part of the thesis can be divided into three parts. At first, an own measurement system was developed and verified. With that system, real data sets can be generated for the development and verification of the disaggregation algorithms. The second part describes the development of an event detector. Different methods are presented and evaluated, with which the switching times of the appliances can be detected in the load profile. The last part describes a classification method. Different features are used for the classification. The classifier recognizes and labels the individual appliances in the load profile. For the classification different structures of artificial neural network (ANN) are compared.
7

Artificial Neural Network Approach For Characterization Of Acoustic Emission Sources From Complex Noisy Data

Bhat, Chandrashekhar 06 1900 (has links)
Safety and reliability are prime concerns in aircraft performance due to the involved costs and risk to lives. Despite the best efforts in design methodology, quality evaluation in production and structural integrity assessment in-service, attainment of one hundred percent safety through development and use of a suitable in-flight health monitoring system is still a farfetched goal. And, evolution of such a system requires, first, identification of an appropriate Technique and next its adoption to meet the challenges posed by newer materials (advanced composites), complex structures and the flight environment. In fact, a quick survey of the available Non-Destructive Evaluation (NDE) techniques suggests Acoustic Emission (AE) as the only available method. High merit in itself could be a weakness - Noise is the worst enemy of AE. So, while difficulties are posed due to the insufficient understanding of the basic behavior of composites, growth and interaction of defects and damage under a specified load condition, high in-flight noise further complicates the issue making the developmental task apparently formidable and challenging. Development of an in-flight monitoring system based on AE to function as an early warning system needs addressing three aspects, viz., the first, discrimination of AE signals from noise data, the second, extraction of required information from AE signals for identification of sources (source characterization) and quantification of its growth, and the third, automation of the entire process. And, a quick assessment of the aspects involved suggests that Artificial Neural Networks (ANN) are ideally suited for solving such a complex problem. A review of the available open literature while indicates a number of investigations carried out using noise elimination and source characterization methods such as frequency filtering and statistical pattern recognition but shows only sporadic attempts using ANN. This may probably be due to the complex nature of the problem involving investigation of a large number of influencing parameters, amount of effort and time to be invested, and facilities required and multi-disciplinary nature of the problem. Hence as stated in the foregoing, the need for such a study cannot be over emphasized. Thus, this thesis is an attempt addressing the issue of analysis and automation of complex sets of AE data such as AE signals mixed with in-flight noise thus forming the first step towards in-flight monitoring using AE. An ANN can in fact replace the traditional algorithmic approaches used in the past. ANN in general are model free estimators and derive their computational efficiency due to large connectivity, massive parallelism, non-linear analog response and learning capabilities. They are better suited than the conventional methods (statistical pattern recognition methods) due to their characteristics such as classification, pattern matching, learning, generalization, fault tolerance and distributed memory and their ability to process unstructured data sets which may be carrying incomplete information at times and hence chosen as the tool. Further, in the current context, the set of investigations undertaken were in the absence of sufficient a priori information and hence clustering of signals generated by AE sources through self-organizing maps is more appropriate. Thus, in the investigations carried out under the scope of this thesis, at first a hybrid network named "NAEDA" (Neural network for Acoustic Emission Data Analysis) using Kohonen self-organizing feature map (KSOM) and multi-layer perceptron (MLP) that learns on back propagation learning rule was specifically developed with innovative data processing techniques built into the network. However, for accurate pattern recognition, multi-layer back propagation NN needed to be trained with source and noise clusters as input data. Thus, in addition to optimizing the network architecture and training parameters, preprocessing of input data to the network and multi-class clustering and classification proved to be the corner stones in obtaining excellent identification accuracy. Next, in-flight noise environment of an aircraft was generated off line through carefully designed simulation experiments carried out in the laboratory (Ex: EMI, friction, fretting and other mechanical and hydraulic phenomena) based on the in-flight noise survey carried out by earlier investigators. From these experiments data was acquired and classified into their respective classes through MLP. Further, these noises were mixed together and clustered through KSOM and then classified into their respective clusters through MLP resulting in an accuracy of 95%- 100% Subsequently, to evaluate the utility of NAEDA for source classification and characterization, carbon fiber reinforced plastic (CFRP) specimens were subjected to spectrum loading simulating typical in-flight load and AE signals were acquired continuously up to a maximum of three designed lives and in some cases up to failure. Further, AE signals with similar characteristics were grouped into individual clusters through self-organizing map and labeled as belonging to appropriate failure modes, there by generating the class configuration. Then MLP was trained with this class information, which resulted in automatic identification and classification of failure modes with an accuracy of 95% - 100%. In addition, extraneous noise generated during the experiments was acquired and classified so as to evaluate the presence or absence of such data in the AE data acquired from the CFRP specimens. In the next stage, noise and signals were mixed together at random and were reclassified into their respective classes through supervised training of multi-layer back propagation NN. Initially only noise was discriminated from the AE signals from CFRP failure modes and subsequently both noise discrimination and failure mode identification and classification was carried out resulting in an accuracy of 95% - 100% in most of the cases. Further, extraneous signals mentioned above were classified which indicated the presence of such signals in the AE signals obtained from the CFRP specimen. Thus, having established the basis for noise identification and AE source classification and characterization, two specific examples were considered to evaluate the utility and efficiency of NAEDA. In the first, with the postulation that different basic failure modes in composites have unique AE signatures, the difference in damage generation and progression can be clearly characterized under different loading conditions. To examine this, static compression tests were conducted on a different set of CFRP specimens till failure with continuous AE monitoring and the resulting AE signals were classified through already trained NAEDA. The results obtained shows that the total number of signals obtained were very less when compared to fatigue tests and the specimens failed with hardly any damage growth. Further, NAEDA was able to discriminate the"noise and failure modes in CFRP specimen with the same degree of accuracy with which it has classified such signals obtained from fatigue tests. In the second example, with the same postulate of unique AE signatures for different failure modes, the differences in the complexion of the damage growth and progression should become clearly evident when one considers specimens with different lay up sequences. To examine this, the data was reclassified on the basis of differences in lay up sequences from specimens subjected to fatigue. The results obtained clearly confirmed the postulation. As can be seen from the summary of the work presented in the foregoing paragraphs, the investigations undertaken within the scope of this thesis involve elaborate experimentation, development of tools, acquisition of extensive data and analysis. Never the less, the results obtained were commensurate with the efforts and have been fruitful. Of the useful results that have been obtained, to state in specific, the first is, discrimination of simulated noise sources achieved with significant success but for some overlapping which is not of major concern as far as noises are concerned. Therefore they are grouped into required number of clusters so as to achieve better classification through supervised NN. This proved to be an innovative measure in supervised classification through back propagation NN. The second is the damage characterization in CFRP specimens, which involved imaginative data processing techniques that proved their worth in terms of optimization of various training parameters and resulted in accurate identification through clustering. Labeling of clusters is made possible by marking each signal starting from clustering to final classification through supervised neural network and is achieved through phenomenological correlation combined with ultrasonic imaging. Most rewarding of all is the identification of failure modes (AE signals) mixed in noise into their respective classes. This is a direct consequence of innovative data processing, multi-class clustering and flexibility of grouping various noise signals into suitable number of clusters. Thus, the results obtained and presented in this thesis on NN approach to AE signal analysis clearly establishes the fact that methods and procedures developed can automate detection and identification of failure modes in CFRP composites under hostile environment, which could lead to the development of an in-flight monitoring system.
8

A Real-Time Classification approach of a Human Brain-Computer Interface based on Movement Related Electroencephalogram

Mileros, Martin D. January 2004 (has links)
<p>A Real-Time Brain-Computer Interface is a technical system classifying increased or decreased brain activity in Real-Time between different body movements, actions performed by a person. Focus in this thesis will be on testing algorithms and settings, finding the initial time interval and how increased activity in the brain can be distinguished and satisfyingly classified. The objective is letting the system give an output somewhere within 250ms of a thought of an action, which will be faster than a persons reaction time. </p><p>Algorithms in the preprocessing were Blind Signal Separation and the Fast Fourier Transform. With different frequency and time interval settings the algorithms were tested on an offline Electroencephalographic data file based on the "Ten Twenty" Electrode Application System, classified using an Artificial Neural Network. </p><p>A satisfying time interval could be found between 125-250ms, but more research is needed to investigate that specific interval. A reduction in frequency resulted in a lack of samples in the sample window preventing the algorithms from working properly. A high frequency is therefore proposed to help keeping the sample window small in the time domain. Blind Signal Separation together with the Fast Fourier Transform had problems finding appropriate correlation using the Ten-Twenty Electrode Application System. Electrodes should be placed more selectively at the parietal lobe, in case of requiring motor responses.</p>
9

A Real-Time Classification approach of a Human Brain-Computer Interface based on Movement Related Electroencephalogram

Mileros, Martin D. January 2004 (has links)
A Real-Time Brain-Computer Interface is a technical system classifying increased or decreased brain activity in Real-Time between different body movements, actions performed by a person. Focus in this thesis will be on testing algorithms and settings, finding the initial time interval and how increased activity in the brain can be distinguished and satisfyingly classified. The objective is letting the system give an output somewhere within 250ms of a thought of an action, which will be faster than a persons reaction time. Algorithms in the preprocessing were Blind Signal Separation and the Fast Fourier Transform. With different frequency and time interval settings the algorithms were tested on an offline Electroencephalographic data file based on the "Ten Twenty" Electrode Application System, classified using an Artificial Neural Network. A satisfying time interval could be found between 125-250ms, but more research is needed to investigate that specific interval. A reduction in frequency resulted in a lack of samples in the sample window preventing the algorithms from working properly. A high frequency is therefore proposed to help keeping the sample window small in the time domain. Blind Signal Separation together with the Fast Fourier Transform had problems finding appropriate correlation using the Ten-Twenty Electrode Application System. Electrodes should be placed more selectively at the parietal lobe, in case of requiring motor responses.
10

Application Of ANN Techniques For Identification Of Fault Location In Distribution Networks

Ashageetha, H 10 1900 (has links)
Electric power distribution network is an important part of electrical power systems for delivering electricity to consumers. Electric power utilities worldwide are increasingly adopting the computer aided monitoring, control and management of electric power distribution systems to provide better services to the electrical consumers. Therefore, research and development activities worldwide are being carried out to automate the electric power distribution system. The power distribution system consists of a three-phase source supplying power through single-, two-, or three-phase distribution lines, switches, and transformers to a set of buses with a given load demand. In addition, unlike transmission systems, single-, two-, and three-phase sections exist in the network and single-, two-, and three-phase loads exist in the distribution networks. Further, most distribution systems are overhead systems, which are susceptible to faults caused by a variety of situations such as adverse weather conditions, equipment failure, traffic accidents, etc. When a fault occurs on a distribution line, it is very important for the utility to identify the fault location as quickly as possible for improving the service reliability. Hence, one of the crucial blocks in the operation of distribution system is that of fault detection and it’s location. The achievement of this objective depends on the success of the distribution automation system. The distribution automation system should be implemented quickly and accurately in order to isolate those affected branches from the healthy parts and to take alternative measures to restore normal power supply. Fault location in the distribution system is a difficult task due to its high complexity and difficulty caused by unique characteristics of the distribution system. These unique characteristics are discussed in the present work. In recent years, some techniques have been discussed for the location of faults, particularly in radial distribution systems. These methods use various algorithmic approaches, where the fault location is iteratively calculated by updating the fault current. Heuristic and Expert System approaches for locating fault in distribution system are also proposed which uses more measurements. Measurements are assumed to be available at the sending end of the faulty line segment, which are not true in reality as the measurements are only available at the substation and at limited nodes of the distribution networks through the use of remote terminal units. The emerging techniques of Artificial Intelligence (AI) can be a solution to this problem. Among the various AI based techniques like Expert systems, Fuzzy Set and ANN systems, the ANN approach for fault location is found to be encouraging. In this thesis, an ANN approaches with limited measurements are used to locate fault in long distribution networks with laterals. Initially the distribution system modeling (using actual a-b-c phase representation) for three-, two-, and single-phase laterals, three-, two-, and single- phase loads are described. Also an efficient three-phase load flow and short circuit analysis with loads are described which is used to simulate all types of fault conditions on distribution systems. In this work, function approximation (FA) is the main technique used and the classification techniques take a major supportive role to the FA problem. Fault location in distribution systems is explained as a FA problem, which is difficult to solve due to the various practical constraints particular to distribution systems. Incorporating classification techniques reduce this FA problem to simpler ones. The function that is approximated is the relation between the three-phase voltage and current measurements at the substation and at selected number of buses (inputs), and the line impedance of the fault points from the substation (outputs). This function is approximated by feed forward neural network (FFNN). Similarly for solving the classification problems such as fault type classification and source short circuit level classification, Radial Basis Probabilistic Neural Network (RBPNN) has been employed. The work presented in this thesis is the combinational use of FFNN and RBPNN for estimating the fault location. Levenberg Marquardt learning method, which is robust and fast, is used for training FFNN. A typical unbalanced 11-node test system, an IEEE 34 nodes test system and a practical 69- bus long distribution systems with different configurations are considered for the study. The results show that the proposed approaches of fault location gives accurate results in terms of estimated fault location. Practical situations in distribution systems such as unbalanced loading, three-, two-, and single- phase laterals, limited measurements available, all types of faults, a wide range of varying source short circuit levels, varying loading conditions, long feeders with multiple laterals and different network configurations are considered for the study. The result shows the feasibility of applying the proposed method in practical distribution system fault diagnosis.

Page generated in 0.0961 seconds