• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Expression variation in lysosomal storage disorder genes

Mason, Lyndel Ann January 2006 (has links)
Metachromatic leukodystrophy (MLD) and Gaucher disease (GD) are caused by a deficiency of arylsulphatase A (ASA) and b-glucocerebrosidase (GBA), respectively. They are lysosomal storage disorders with a heterogeneous clinical spectrum encompassing visceral, skeletal and neurologic involvement resulting in high morbidity and mortality. The overall aim of this study is to elucidate the genetic component/s of high ASA and GBA enzyme activity in normal healthy individuals with the ultimate goal of using this information to produce greater protein activity from a recombinant protein. A wide variation in ASA and GBA enzyme activity levels has been observed in the normal population. The first objective of this project was to identify and characterise single nucleotide polymorphisms (SNPs) in the arylsulphatase A (ARSA) and glucocerebrosidase (GBA) genes that are responsible for determining the levels of expressed enzyme activity in the normal population. The second objective was to assess the contribution of transcriptional regulation and TCP80 mediated translational control to normal enzyme variation. TCP80, a translational control protein that interacts with the GBA coding region, is a splice variant of the interleukin binding factor 3 (ILF3) gene. Ten samples from individuals with high ASA activity and twenty samples from individuals with high GBA activity were screened for polymorphisms via denaturing high pressure liquid chromatography (dHPLC) and sequencing. The frequency of these polymorphisms in the normal population was determined using dot-blot hybridisation. Fifteen ARSA polymorphisms (4 promoter, 5 coding, 5 intronic and 1 poly(A) signal) and two GBA polymorphisms (1 intronic and 1 in 3¢-UTR) were identified. Two low frequency ASA polymorphisms (2723A > G, W193C) were found to be correlated with low activity, while another low frequency ASA polymorphism (1101+123C > T) was found to be correlated with high activity in a population of 113 individuals. Real time PCR was used to measure mRNA levels of GBA, ASA and LF3 along with enzyme activity levels of GBA and ASA in two cell types (leucocytes and skin fibroblasts) from four healthy individuals and seven cell lines (HL60, THP1, Huh7, U118, SW1353, Hep G2, and B-cells). Transcriptional control was evident for all three genes with GBA mRNA levels varying over 30 fold, ASA mRNA levels varying over seven fold and ILF3 levels varying more than 24 fold. The 5¢-flanking region of GBA was investigated for the cis-elements responsible for tissue-specific expression. However, it was not possible to demonstrate that the cis-element region was influencing GBA expression. Translational efficiency was measured using the magnitude of the mRNA:enzyme activity ratio as an indicator. GBA translational inefficiency was most pronounced in B cells which require four times more mRNA molecules than hepatocytes (Hep G2) and over 25 times more mRNA molecules than chondrocytes (SW1353) to produce one unit of GBA enzyme activity. Except in B-cells, GBA translational efficiency appears to increase as ILF3 mRNA levels decrease. The tissue-specific variation observed in the protein levels of the ILF3 splice variants, TCP80 and DRBP76, may play a role. The correlation of several low frequency SNPs with low ASA enzyme activity or high ASA activity indicates a role in determining the distribution of enzyme activity levels in the normal population. However, there do not appear to be any common high activity polymorphisms. Knowledge of the exact mechanisms responsible for the observed transcriptional and translational control of these lysosomal genes will greatly enhance the understanding of genotype-phenotype correlation and the contribution of genetic variants to natural variation.
2

The distribution, biosynthetic origin and functional significance of Tyrian purple precursors in the Australian muricid Dicathais orbita (Neogastropoda: Muricidae)

Westley, Chantel Barbara, chantel.westley@flinders.edu.au January 2008 (has links)
Information on the biosynthetic origin and functional advantage of marine mollusc natural products is not only essential to our understanding of chemical ecology, but to the development and responsible production of therapeutic agents. As demonstrating in situ activity is methodologically hindered, functions inferred by in vitro activity have been assumed for many secondary metabolites. The anatomical and ontogenetic distribution of natural products can not only provide information on the biosynthesis and storage of metabolites, but identify selective pressures likely to affect survivorship at a specific life stage. Thus, dissection and chemical analysis of distinct tissues, in combination with histochemistry may offer a valuable approach. Marine gastropods of the Muricidae are renowned for the ancient dye Tyrian purple, which evolves from choline esters of bromoindoxyl sulphate in the hypobranchial gland through a series of enzymatic and photo-oxidative reactions. Prochromogen hydrolysis by arylsulphatase liberates neuromuscular active choline esters and cytotoxic bromoindole precursors, which also occur in muricid egg masses. Although visual accounts of dye pigments in the muricid gonoduct suggest precursors may be incorporated into egg masses from a maternal source, their biosynthetic origin and the evolutionary significance of the hypobranchial gland is unknown. Thus, the Muricidae, and in particular Dicathais orbita upon which most previous research has been focused, is an ideal model for this novel approach to natural product research. To confirm observations of dye pigments in muricid gonoducts and gain an understanding of their anatomical distribution, a liquid chromatography-mass spectrometry (LC-MS) method was developed to simultaneously quantify pigments, precursors and the prochromogen, tyrindoxyl sulfate. The prochromogen was not only detected in albumen and capsule gland extracts, but bioactive intermediates and the dye 6,6’-dibromoindigo were also present in the latter. These findings provided preliminary evidence for the maternal provision of prochromogens in egg masses of D. orbita and identified regions within which to conduct histochemical investigations. Tyrindoxyl sulphate was also detected in male prostate gland extracts, along with the dibromoindigo isomer, 6,6’-dibromoindirubin and its oxidative precursor, 6-bromoisatin. This not only implies physiological differences exist between male and female gonoducts, but that these secondary metabolites are not solely intended for egg masses and may hold significance throughout the life cycle. Histomorphological inspection of the pallial gonoduct-hypobranchial gland complex was conducted over the annual cycle to determine a mechanism for precursor transfer between these structures. Although an anatomical connection was not detected, the secretions of two hypobranchial cell types thought to be involved in Tyrian purple synthesis were of remarkable biochemical similarity to those of various capsule and albumen gland lobes. Together these findings implied the potential for natural product synthesis within the pallial gonoduct of D. orbita. To establish the role of these glandular lobes in the incorporation of intracapsular fluid and capsule laminae, identical histochemical techniques were applied to transverse capsule wall sections. Biochemical correlations not only provided a simple method of deciphering the complex process of encapsulation in neogastropods, but effectively identified the destination of gonoduct secretions in egg capsules of D. orbita. Comparisons of capsule and gonoduct biochemistry revealed that the intracapsular fluid and inner capsule wall are secreted by the posterior capsule gland lobe, the middle lamina by the lateral lobes and the outer layers by the dorsal lobe, albumen and pedal glands. Investigation into the location of regulatory enzymes and precursors was conducted to establish the biosynthetic origin of Tyrian purple prochromogens and mechanisms governing bioactive precursor synthesis. Novel histochemical techniques for the localization of bromoperoxidase, the enzyme thought to facilitate prochromogen bromination, and tyrindoxyl sulphate were developed and applied to gonoduct, hypobranchial gland, and encapsulated larvae sections. Standard staining reactions for the indole precursor, tryptophan, and arylsulphatase were also applied. The histochemical approach adopted revealed that tyrindoxyl sulphate is de novo biosynthesized through the post-translational bromination of dietary derived tryptophan. Two biosynthetic sites were identified, one related to hypobranchial secondary metabolism and the second of significance to the presence of bioactive precursors in muricid egg masses. Tryptophan is stored within secretory cells of the lateral hypobranchial epithelium and once exocytosed, is united with bromoperoxidase from supportive cells to form tyrindoxyl sulphate. Prochromogen synthesis also occurs in the subepithelial vascular sinus for storage and secretion by medial hypobranchial secretory cells. Bioactive precursor synthesis on the epithelial surface is regulated by the liberation of arylsulphatase from adjacent supportive cells. These findings not only provide evidence for de novo biosynthesis of Tyrian purple precursors, but are first account of natural product biosynthesis within the gastropod hypobranchial gland. Together these findings imply a naturally selected function for the synthesis of bioactive indoles in hypobranchial gland secretions of the Muricidae and Gastropoda. Tyrindoxyl sulphate is also transported within the vascular sinus to lateral and dorsal capsule gland lobes where bromoperoxidase and arylsulphatase also occur. Arylsulphatase was also detected within the albumen gland, which along with the posterior capsule gland lobe, acts as a storage site for dietary tryptophan. Thus, tyrindoxyl sulphate and the constituents for prochromogen and precursor biosynthesis are introduced to intracapsular fluid and capsule laminae by the capsule gland. Histochemistry in combination with LC-MS revealed an identical biosynthetic profile within larval vitellus, which is elaborated during oogenesis and may also receive secretions from the albumen gland. Due to the absence of a hypobranchial gland in veligers, it appears that pelagic larvae rely on vitelline natural products until settlement and metamorphous. These findings together with the in situ antimicrobial activity of bromoindoles suggest Tyrian purple precursors are incorporated into muricid egg masses as a maternal investment in larval defence against pathogens. The results of this investigation clearly highlight the benefits of adopting a histochemical approach to natural product research. This novel alternative to radioisotopes and in situ demonstration of bioactivity, can not only aid in the elucidation of secondary metabolic pathways and chemically mediated interactions, but identify mechanisms of metabolite regulation and differentiate between biosynthetic and storage tissues. Apart from providing insight into the ecological significance of muricid secondary metabolites, the biosynthetic information provided is valuable to our understanding of chemical phylogeny and biosynthetic enzyme sequencing for the environmentally sound development of natural products as biomedical agents.
3

Sorption, degradation and transport of estrogens and estrogen sulphates in agricultural soils

Scherr, Frank January 2009 (has links)
The fate and behaviour of estrogens in the environment are of concern due to the compounds’ endocrine disruption potential. Estrogens, namely 17β-estradiol (E2), estrone (E1), and estrogen sulphates, i.e. 17β-estradiol-3-sulphate (E2-3S) and estrone-3-sulphate (E1-3S) excreted by livestock constitute a potential source for estrogen contamination in the environment. A method was developed to separate and quantify the hormones by high-performance-liquid-chromatography (HPLC) and ultraviolet detection (UV). A combination of dichloromethane (DCM) and dicyclohexylamine hydrochloride (DCH·HCl) gave recoveries from 97.3 to 107% for E1-3S extraction from aqueous solutions. The recoveries from soil samples ranged from 80.9 to 95.2% (E2-3S), and from 86.3 to 91.7% (E1-3S), respectively. Results of batch sorption studies showed that Freundlich isotherms were nonlinear (N ≠ 1) with Kf values ranging from 34.2 to 57.2, and from 3.42 to 4.18 mg¹-N LN kg⁻¹ for E1, and E1-3S, respectively, indicating the sorption affinity of E1-3S was about an order of magnitude lower than that of E1. The hydrophilic sulphate group of E1-3S possibly shielded the compound from hydrophobic interactions with the soil organic matter and allophanic clay minerals that were proposed as sorbents for E1. Contraction of clay minerals, “salting out” and competitive sorption of artificial urine constituents were likely to have been responsible for observed changes in Freundlich parameters when artificial urine was used as mediator matrix. Plotting the effective distribution coefficient as a function of hypothetical exposure concentrations facilitated the comparison of the sorption behaviour of both compounds as influenced by the mediator solution. The results emphasized that using the CaCl₂ matrix might result in false inferences for the sorption behaviour of these compounds in a dairying environment. The four hormones rapidly degraded in the agricultural soils under aerobic conditions, and the majority of the compounds degraded > 50% within the first 24 hrs. Soil arylsulphatase activities were directly correlated with degradation rate constants of the estrogen sulphates. Estrone was identified as a metabolite of E2 and E1-3S, and these three compounds were observed as metabolites of E2-3S. Single-first order (SFO) and double first-order in parallel (DFOP) kinetics were used to model the degradation and metabolite formation data. The results showed that the DFOP model was in most cases better able to predict the parent compound degradation than the SFO model, and also enabled to estimate accurate degradation endpoints. ER-CALUX® analysis revealed the formation of estrogenicity during E2-3S degradation, which could partly be explained by the formation of the metabolites E2 and E1. Transport studies with E1-3S and E1 showed that the transport and retention of both compounds were significantly influenced by the mediator matrix. While no breakthrough curves (BTCs) were recorded during hormone application in CaCl₂ (10 mM) both hormones were detected in the leachate when applied in artificial urine. Rate-limited sorption processes were proposed for the delayed arrival of the hormone BTCs compared with a conservative bromide tracer. Intense colouration of the leachate during the artificial urine experiments suggested the hormones were likely to be moved by colloid-facilitated transport. Furthermore, the detection of residue hormone and metabolite concentrations implied that degradation of E1-3S and E1 was hampered by urine constituents such as glycine and urea.

Page generated in 0.0323 seconds