Spelling suggestions: "subject:"isaia"" "subject:"asada""
1 |
Bakterie rodu Asaia a Wolbachia u flebotomů / Bacteria genus Asaia and Wolbachia in sandfliesSovová, Kristina January 2020 (has links)
Phlebotomine sand flies are proven vectors of many pathogens including parasites of genus Leishmania. Leishmania develop in sand fly midgut which is colonized also by many others microorganisms, creating rich community known as gut microbiota. The presence and composition of gut microbiota affect sand fly mortality, but also development of transmitted pathogens. In contrast to mosquitoes, sand fly gut microbiota is not well studied. This thesis focuses on bacteria of the genera Asaia and Wolbachia and their potential impact on Leishmania in sand fly midgut. Thesis reports the first finding of Asaia sp. and Wolbachia sp. in sand flies from Balkan penninsula - hotspot for visceral leishmaniasis and phleboviruses. In 273 individuals from subgenera Larroussius were Asaia sp. and Wolbachia sp. detected with infection prevalence 2,5 % and 8,4 %, respectively. In addition, laboratory-reared sand flies were tested for presence of these bacteria: from twelve studied colonies, only Phlebotomus perniciosus was infected by Wolbachia sp. Then, we focussed on elimination of Wolbachia sp. from this laboratory colony with the aim to use Wolbachia-negative sand flies in future experiments with Leishmania. The final part of the thesis was dedicated to bacteria of the genus Asaia (specifically A. krungthepensis),...
|
2 |
Écologie du microbiote bactérien associé au moustique tigre Aedes albopictus : une approche "omique" pour l'exploration de l'holobionte vecteur / Bacterial microbiota ecology in the asian tiger mosquito Aedes albopictus : an "omics" approach to investigate the vector holobiontMinard, Guillaume 15 December 2014 (has links)
Originaire d'Asie du Sud et de l'Est, le moustique tigre Aedes albopictus est aujourd'hui implanté sur 5 des 6 continents et les moyens de lutte mis en place pour l'éliminer peinent à freiner son expansion. Ces dernières années, l'étude des communautés microbiennes associées aux insectes a permis de démontrer leur implication dans des fonctions clefs de la biologie de leurs hôtes (nutrition, immunité, résistance aux stress biotiques et abiotiques …). Ensemble, ils constituent un super-organisme appelé holobionte. Ainsi, une meilleure connaissance de l'écologie microbienne d'Ae. albopictus pourrait nous apporter de nouvelles perspectives dans la compréhension du fonctionnement du pathosystème vectoriel. C'est dans ce contexte que s'est inscrit mon projet de thèse qui a consisté à décrire le microbiote bactérien du moustique tigre en lien avec son écologie et la génétique de ses populations. Nos travaux se sont tout d'abord portés sur des exemples précis d'interactions avec des symbiotes d'intérêts puis nous avons élargi cette étude à l'ensemble des communautés bactériennes et leurs facteurs de variation, en bénéficiant du développement des nouvelles technologies de séquençage. Les résultats obtenus ouvrent la voie vers de nouvelles hypothèses sur le fonctionnement et la dynamique de l'holobionte moustique avec la prise en compte des interactions symbiotiques comme un élément majeur du pathosystème vectoriel / Originated from South East Asia, the Asian tiger mosquito Aedes albopictus is now established on 5 of the 6 continents. Control strategies to limit its introduction and expansion remain restricted. Those last years, studies on insect microbial communities highlighted the key role of symbionts in the biology of their hosts (nutrition, immunity, resistance to biotic and abiotic stresses…). Together, they constitute a super-organism called the holobiont. Therefore, a better knowledge of microbial ecology of Ae. Albopictus should increase the understanding of vectorial pathosystem. In this context, my thesis project consisted to improve the description of bacterial microbiota associated with the Asian tiger mosquito in relation with its ecology and population genetics. We first based our attention on specific models of symbiotic interactions and then we extended our study to the whole bacterial community and its variation factors using high throughput sequencing technologies. Our results open the way to new hypotheses about the function and dynamics of mosquito holobionte taking into account the symbiotic interactions as a major component of the vectorial pathosystem
|
3 |
Secretion of Malaria Transmission-Blocking Proteins from Paratransgenic BacteriaBongio, Nicholas 18 May 2016 (has links)
Malaria is a debilitating and deadly disease that afflicts over 200 million people and kills over 600 thousand each year. Due to quickly evolving drug resistance and lack of an affordable vaccine, novel interventions are needed to fight the Plasmodium parasites that cause malaria. Targeting Plasmodium inside their mosquito hosts is one approach that could complement other preventative and medicinal interventions by reducing the ability of the mosquitoes to transmit the disease to humans. The research presented here uses paratransgenesis, the genetic modification of symbiotic bacteria within the mosquito midgut, to provide antimalarial protein to the mosquito and to interfere with the life cycle of Plasmodium within the insect host.
<br>This research has produced three new antimalarial paratransgenic tools. The first tool is a set of new antimalarial effector proteins that were constructed by converting anti-Plasmodium mouse antibodies into single-chain variable fragment (scFv) versions for expression by bacteria. These antibodies bind to Plasmodium surface proteins and interfere with critical steps in the parasite life cycle. The second tool is a modified bacterial species, Pantoea agglomerans , which was engineered to secrete diverse antimalarial proteins via the hemolysin secretion pathway. Modified P. agglomerans were fed to mosquitoes and were capable of inhibiting the invasion of Plasmodium within the midgut. The third tool is another modified bacterial species, Asaia sp. SF2.1. Native Type II secretion signals were discovered that enable the creation of paratransgenic strains of these bacteria. Modified strains of Asaia sp. SF2.1 were also demonstrated to interfere with the invasion of Plasmodium within the mosquito.
<br>These tools have laid the groundwork for the future use of paratransgenic bacteria to combat malaria in the wild. Asaia sp. SF2.1 bacteria, in particular, are capable of spreading throughout mosquito populations, so they provide their own drive mechanism to establish themselves within the mosquito vectors of malaria. While further modifications will be required to make these bacteria ready for field use, the findings of this research provide proof of concept that the bacteria are suitable for eventual use in malaria transmission-blocking interventions. / Bayer School of Natural and Environmental Sciences; / Biological Sciences / PhD; / Dissertation;
|
Page generated in 0.0449 seconds