• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 1
  • Tagged with
  • 17
  • 17
  • 12
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Chickpea improvement through genetic analysis and quantitative trait locus (QTL) mapping of ascochyta blight resistence using wild Cicer species

Aryamanesh, Nader January 2008 (has links)
[Truncated abstract] The genetics of ascochyta blight resistance was studied in five 5 x 5 half-diallel cross sets involving seven genotypes of chickpea (ICC 3996, Almaz, Lasseter, Kaniva, 24B-Isoline, IG 9337 and Kimberley Large), three accessions of Cicer reticulatum (ILWC 118, ILWC 139 and ILWC 184) and one accession of C. echinospermum (ILWC 181) under field conditions. Both F1 and F2 generations were used in the diallel analysis. Almaz, ICC 3996 and ILWC 118 were the most resistant genotypes. Estimates of genetic parameters, following Hayman's method, showed significant additive and dominant gene actions. The analysis also revealed the involvement of both major and minor genes. Susceptibility was dominant over resistance to ascochyta blight. The recessive alleles were concentrated in the two resistant chickpea parents ICC 3996 and Almaz, and one C. reticulatum genotype ILWC 118. High narrow-sense heritability (ranging from 82 to 86% for F1 generations, and 43 to 63% for F2 generations) indicates that additive gene effects were more important than non-additive gene effects in the inheritance of the trait and greater genetic gain by breeding resistant chickpea cultivars using carefully selected parental genotypes. Current simple leaf varieties are often susceptible to ascochyta blight disease whereas varieties of other leaf types range from resistant to susceptible. The inheritance of ascochyta blight resistance and different leaf types and their correlation were investigated in intraspecific progeny derived from crosses among two resistant genotypes with normal leaf type (ICC 3996 and Almaz), one susceptible simple leaf type (Kimberley Large) and one susceptible multipinnate leaf type (24 B-Isoline). ... An interspecific F2 mapping population derived from a cross between chickpea accession ICC 3996 (resistant to ascochyta blight, early flowering, and semi-erect plant growth habit) and C. reticulatum accession ILWC 184 (susceptible to ascochyta blight, ii late flowering, and prostrate plant growth habit) was used for constructing a genetic linkage map. F2 plants were cloned through stem cuttings taken at pre-flowering stage, treated with plant growth regulator powder (0.5 mg/g indole butyric acid (IBA) and 0.5 mg/g naphthalene acetic acid (NAA)) and grown in a sand + potting mix substrate. Clones were screened for ascochyta blight resistance in controlled environment conditions using a 19 scale. Three quantitative trait loci (QTLs) were found for ascochyta blight resistance in this population. Two linked QTLs, located on linkage group (LG) 4, explained 21.1% and 4.9% of the phenotypic variation. The other QTL, located on LG3, explained 22.7% of the phenotypic variation for ascochyta blight resistance. These QTLs explained almost 49% of the variation for ascochyta blight resistance. LG3 had two major QTLs for days to flowering (explaining 90.2% of phenotypic variation) and a major single QTL for plant growth habit (explaining 95.2% of phenotypic variation). There was a negative correlation between ascochyta blight resistance and days to flowering, and a positive correlation between days to flowering and plant growth habit. The flanking markers for ascochyta blight resistance or other morphological characters can be used in marker-assisted selections to facilitate breeding programs.
12

Effect and underlying mechanisms of cultivar mixtures on weed and disease suppression in field pea (<i>Pisum sativum</i>)

2014 February 1900 (has links)
Field pea is an important annual crop due to its contribution to soil fertility and other rotational benefits. However, weeds and ascochyta blight limit pea yield, particularly in organic systems. Leafed and semi-leafless pea types differ in lodging resistance, and may affect weeds and disease through differences in canopy light penetration and air flow. Mixtures of the two leaf types may improve weed and disease suppression and yield compared with monocultures of the same cultivars. To test this hypothesis, replicated field experiments were conducted under organic and conventional management in Saskatoon and Vonda, SK, in 2011 and 2012. Mixtures of a leafed and semi-leafless cultivar, CDC Sonata and CDC Dakota, were sown in ratios of 0:100, 25:75, 50:50, 75:25, and 100:0 leafed to semi-leafless pea, at target seeding rates of 88 and 132 plants m-2. Conventionally managed plots were inoculated with ascochyta blight-infested pea straw and received overhead irrigation to encourage disease. Mixtures of 50% or more semi-leafless pea adopted the greater lodging resistance and weed suppression of the semi-leafless cultivar. Mixtures comprised of 25% leafed and 75% semi-leafless pea increased both seed and biomass yield compared with either cultivar grown alone. Yield enhancement was attributed to the leafed cultivar, whose seed yield was 76% higher in mixture than expected based on monoculture yield. Ascochyta blight epidemics were of moderate severity, and leafed and semi-leafless monocultures reached 36 and 43% necrosis in 2011, and 33 and 38% necrosis in 2012, respectively. The disease reaction of mixtures fell between the two component cultivars. At disease onset in 2012, lower light interception and shorter moisture durations coincided with the lower ascochyta blight severity of leafed monocultures. In 2011 and the later phase of the 2012 epidemic, disease severity was negatively associated with vine length, and positively associated with number of nodes and tissue senescence. Despite the advantages of leafed and semi-leafless pea mixtures, the limited selection of leafed cultivars impedes adoption of this technique by growers. For pea breeders, developing mixtures of pea lines isogenic for leaf type may increase yield compared with single cultivars.
13

Harmfulness of field pea (Pisum sativum L.) fungal diseases, their prevention and control / Sėjamojo žirnio (Pisum sativum L.) grybinių ligų žalingumas, jų prevencija ir kontrolė

Česnulevičienė, Rūta 23 November 2012 (has links)
Research objective and experimental tasks. The study was designed to explore the incidence and severity of root and foot rots and ascochyta blight in field pea crops and to identify the measures and practices for the prevention and control of the diseases caused by the pathogens of Ascochyta complex. Experimental tasks: - To identify the susceptibility of various field pea varieties to root and foot rots and ascochyta blight under different agro-ecological conditions. - To establish the effect of meteorological factors on the severity of root and foot rots and ascochyta blight in field pea crops. - To determine the frequency of detection of pathogens of Ascochyta complex on various pea varieties. - To estimate the feasibility of control of the diseases caused by the pathogens of Ascochyta complex using seed treatment and fungicide application. - To assess the impact of seed treatment and fungicide application on field pea productivity and yield components. - To study the possible side-effect of the chemical seed treatment on the microflora of pea rhizosphere and soil. / Tyrimų tikslas ir uždaviniai. Tyrimais siekta ištirti šaknų, pašaknio puvinių ir askochitozės išplitimą bei žalingumą sėjamojo žirnio pasėliuose, nustatyti Ascochyta komplekso patogenų sukeliamų ligų prevencijos ir kontrolės priemones. Tyrimų uždaviniai: - Nustatyti įvairių sėjamojo žirnio veislių jautrumą šaknų, pašaknio puviniams ir askochitozei skirtingomis agroekologinėmis sąlygomis. - Nustatyti meteorologinių faktorių įtaką šaknų, pašaknio puvinių ir askochitozės intensyvumui žirniuose. - Nustatyti Ascochyta komplekso patogenų aptikimo dažnį ant įvairių veislių žirnių. - Įvertinti Ascochyta komplekso patogenų sukeliamų ligų kontrolės galimybę naudojant beicus ir fungicidus. - Įvertinti beicų ir fungicidų įtaką žirnių derlingumui ir derliaus komponentams. - Ištirti galimą cheminių beicų šalutinį poveikį žirnių rizosferos bei dirvožemio mikroflorai.
14

Ascochyta Rabiei in North Dakota: Characterization of the Secreted Proteome and Population Genetics

Mittal, Nitin January 2011 (has links)
Chickpea is one of the most important leguminous crops grown in regions of southern Europe, Asia, the Middle East, and the United States. Ascochyta blight, caused by Ascochyta rabiei, is the most important foliar disease of chickpea. In favorable conditions, this disease can destroy the entire chickpea field within a few days. In this project the secreted proteins of Ascochyta rabiei have been characterized through one and two-dimensional polyacrylamide gel electrophoresis. This is the first proteomic study of the A. rabiei secretome, and a standardized technique to study the secreted proteome has been developed. A common set of proteins secreted by this pathogen and two isolates that exhibit the maximum and minimum number of secreted proteins when grown in modified Fries and Czapek Dox media have been identified. Population genetic studies of Ascochyta rabiei populations in North Dakota have been conducted using microsatellites and AFLP markers. Population genetic studies have shown that the ascochyta population in North Dakota has not changed genetically in the years 2005, 2006 and 2007, but the North Dakota population is different from the baseline population from the Pacific Northwest. The ascochyta population in North Dakota is a randomly mating population, as shown by the mating type ratio.
15

EFFECT OF PHOTOPERIOD ON THE ADAPTATION OF CHICKPEA (CICER ARIETINUM L.) TO THE CANADIAN PRAIRIES

2015 September 1900 (has links)
Chickpea (Cicer arietinum L.) was recently introduced to the Canadian prairies, a region which has a short growing season in which crop maturation often occurs under cool and wet conditions. To improve the yield of chickpea, crop duration must closely match the available growing season. The objectives of this study were to: i) examine the days to flowering of diverse chickpea accessions grown in either long or short-days; ii) examine the days to flowering of selected chickpea accessions grown in a range of thermal regimes combined with either long or short days and to examine the interaction between photoperiod and day and night temperatures on crop duration; iii) determine the timing and duration of the photoperiod-sensitive phase in selected chickpea accessions, and vi) determine the genetic basis of the association between flowering time and reaction to ascochyta blight in chickpea. A wide variation was observed in chickpea accessions for their response to flowering under long (16/8 hours day /night) and short days (10/14 hours day/night). Earlier flowering was observed under long photoperiod regimes compared with the short photoperiod regimes. Variability was detected among chickpea accessions for their flowering responses when different temperatures were combined with different photoperiods. Earlier flowering was observed under long days (16/8 hours day/night) coupled with high to moderate temperature regimes (24/16 ºC and 20/12 ºC, day and night respectively) compared to short-days (10/14 hours day and night) and moderate to low temperature regimes (20/12 ºC and 16/8 ºC day and night, respectively). Those chickpea accessions such as ICC 6821 and ICCV 96029 which originated from the lower latitudes of Ethiopia and India, respectively, flowered earlier compared to accessions such as CDC Corinne and CDC Frontier which originated from the higher latitudes and cooler temperate environments of western Canada. Photoperiod sensitivity phases were detected in chickpea accessions adapted to the cold environments of western Canada, whereas no photoperiod sensitivity phase was identified in the extra-early flowering cultivar ICCV 96029. The duration of the photoperiod sensitive phase in the chickpea accessions was longer under short days compared to long days. Field and growth chamber evaluation of a chickpea RIL population (CP-RIL-1) revealed the presence of variability among the lines and the two parents for their days to flowering and level of resistance to ascochyta blight. Broad sense heritability across different site-years for days to flower 0.45 to 0.78, plant height 0.48 to 0.78, ascochyta blight resistance 0.14 to 0.68, days to maturity 0.26, photoperiod sensitivity 0.83 and nodes number of first flowering 0.37 to 0.75 were estimated. Days to flower and photoperiod sensitivity were significantly r = -0.21 to -0.58 (P ≤ 0.05 to 0.001) and -0.28 to -0.41 (P ≤ 0.01 to 0.001), respectively and negatively correlated with ascochyta blight resistance in the CP-RIL-1 population. A genetic linkage map consisting of eight linkage groups was developed using 349 SNP markers. Seven QTLs were identified for days to flowering under growth chamber and field conditions on chromosomes 3, 5, 6 and 8 each and 3 QTLs on chromosome 4. The total phenotypic variation explained by QTLs for days to flowering ranged from 7 to 44%. Two QTLs for days to maturity were identified on chromosomes 3 and 8. Three QTLs, one each on chromosomes 3, 4 and 5 were identified for photoperiod sensitivity. The total phenotypic variation explained by each QTL for photoperiod sensitivity ranged from 7 to 41%. A total of three QTL for node of first flowering, one on chromosomes 3 and 8 each, and two on chromosome 4 were identified. The two QTL on chromosome 4 explained total phenotypic variations of 11 and 32%, respectively. Ten QTLs distributed across all chromosomes, except chromosomes 2 and 5, were identified for ascochyta blight resistance. The phenotypic variability explained by each QTL for ascochyta blight resistance ranged from 7 to 17%. The molecular markers associated with these QTLs have potential for use in chickpea breeding.
16

Canopy Architecture and Plant Density Effect in Short-Season Chickpea (Cicer arietinum L.)

Vanderpuye, Archibald W. 22 September 2010
Chickpea (Cicer arietinum L.) production on the semi-arid Canadian Prairies is challenging due to a short growing season and low and variable moisture. The current recommended chickpea population density of 44 plants m-2 is based on preliminary studies and a narrow range of 20 to 50 plants m-2. The aims of this study were to i) determine optimum population density of varying chickpea canopy types, i.e., leaf type and growth habit, by investigating seed yield responses at 30 to 85 plants m-2 and ii) identify desirable parental traits for breeding programs by assessing growth and yield parameter responses to varying leaf types and growth habits at a range of population densities. Field experiments were conducted from 2002 to 2005. Canopy measurements and calculated variables included light interception, biomass, growth rate, seed yield, harvest index, ascochyta blight severity and radiation- and water use efficiencies. The plant density which produced the highest seed yield when averaged over years for each location for each treatment revealed that a plant density of at least 55 plants m-2 produced a 23% to 49% seed yield increase above that of the currently recommended plant density. This indicates that a higher seed yield average over the long term in spite of periodic low seed yield episodes will be more profitable to producers. Increasing plant density increased lowest pod height significantly in all except one location-year but did not explicitly increase ascochyta blight severity or decrease individual seed size. This suggests that increasing the recommended chickpea plant density on the Canadian Prairies will increase seed yield but would neither negatively impact individual seed size nor ascochyta blight severity, especially, when combined with good agronomic practices. Fern-leaved cultivars had significantly higher maximum intercepted light (62 to 91%), seed yield (136 to 369 g m-2), harvest index (0.33 to 0.53), yield-based water use efficiency (0.56 to 1.06 g m-2 mm-1) and lower ascochyta blight severity (3 to 27%) than the unifoliate cultivars in all location-years. The fern-leaved cultivars also tended to show significantly higher cumulative intercepted radiation (221 to 419 MJ m-2) and biomass (306 to 824 g m-2) but leaf type showed no consistent effect on radiation use efficiency. Cultivars with bushy growth habit generally performed better regarding maximum intercepted light (62 to 90%), cumulative intercepted radiation (233 to 421 MJ m-2), biomass (314 to 854 MJ m-2), seed yield (120 to 370 g m-2), harvest index (0.37 to 0.50), yield-based water use efficiency (0.56 to 1.06 g m-2 mm-1) and ascochyta blight severity (7 to 36%) than the erect cultivars. The overall performance of the spreading cultivar was generally intermediate between the bushy and erect cultivars except for ascochyta blight severity where the spreading cultivar exhibited significantly lower disease severity (3 to 36%). Radiation use efficiency was generally not influenced by growth habit. Increasing plant population density generally increased intercepted light, biomass and cumulative intercepted radiation on each sampling day after seeding resulting in a general increase in seed yield. Harvest index, however, remained constant and ascochyta blight severity was generally stable but radiation use efficiency decreased with increasing population density. Chickpea cultivars with fern leaves and bushy growth habit at higher than currently recommended population densities would best utilize the limited resources of the short-season Canadian prairie environment to maximize and stabilize seed yield.
17

Canopy Architecture and Plant Density Effect in Short-Season Chickpea (Cicer arietinum L.)

Vanderpuye, Archibald W. 22 September 2010 (has links)
Chickpea (Cicer arietinum L.) production on the semi-arid Canadian Prairies is challenging due to a short growing season and low and variable moisture. The current recommended chickpea population density of 44 plants m-2 is based on preliminary studies and a narrow range of 20 to 50 plants m-2. The aims of this study were to i) determine optimum population density of varying chickpea canopy types, i.e., leaf type and growth habit, by investigating seed yield responses at 30 to 85 plants m-2 and ii) identify desirable parental traits for breeding programs by assessing growth and yield parameter responses to varying leaf types and growth habits at a range of population densities. Field experiments were conducted from 2002 to 2005. Canopy measurements and calculated variables included light interception, biomass, growth rate, seed yield, harvest index, ascochyta blight severity and radiation- and water use efficiencies. The plant density which produced the highest seed yield when averaged over years for each location for each treatment revealed that a plant density of at least 55 plants m-2 produced a 23% to 49% seed yield increase above that of the currently recommended plant density. This indicates that a higher seed yield average over the long term in spite of periodic low seed yield episodes will be more profitable to producers. Increasing plant density increased lowest pod height significantly in all except one location-year but did not explicitly increase ascochyta blight severity or decrease individual seed size. This suggests that increasing the recommended chickpea plant density on the Canadian Prairies will increase seed yield but would neither negatively impact individual seed size nor ascochyta blight severity, especially, when combined with good agronomic practices. Fern-leaved cultivars had significantly higher maximum intercepted light (62 to 91%), seed yield (136 to 369 g m-2), harvest index (0.33 to 0.53), yield-based water use efficiency (0.56 to 1.06 g m-2 mm-1) and lower ascochyta blight severity (3 to 27%) than the unifoliate cultivars in all location-years. The fern-leaved cultivars also tended to show significantly higher cumulative intercepted radiation (221 to 419 MJ m-2) and biomass (306 to 824 g m-2) but leaf type showed no consistent effect on radiation use efficiency. Cultivars with bushy growth habit generally performed better regarding maximum intercepted light (62 to 90%), cumulative intercepted radiation (233 to 421 MJ m-2), biomass (314 to 854 MJ m-2), seed yield (120 to 370 g m-2), harvest index (0.37 to 0.50), yield-based water use efficiency (0.56 to 1.06 g m-2 mm-1) and ascochyta blight severity (7 to 36%) than the erect cultivars. The overall performance of the spreading cultivar was generally intermediate between the bushy and erect cultivars except for ascochyta blight severity where the spreading cultivar exhibited significantly lower disease severity (3 to 36%). Radiation use efficiency was generally not influenced by growth habit. Increasing plant population density generally increased intercepted light, biomass and cumulative intercepted radiation on each sampling day after seeding resulting in a general increase in seed yield. Harvest index, however, remained constant and ascochyta blight severity was generally stable but radiation use efficiency decreased with increasing population density. Chickpea cultivars with fern leaves and bushy growth habit at higher than currently recommended population densities would best utilize the limited resources of the short-season Canadian prairie environment to maximize and stabilize seed yield.

Page generated in 0.0569 seconds