51 |
Exploring the Molecular Origin of Jet Fuel Thermal Oxidative Deposition Through Statistical Analysis of Mass Spectral Data and Pyrolysis Gas Chromatography/Mass Spectrometry of DepositsChristison, Krege Matthew 01 January 2019 (has links)
ASTM D3241 (Standard Test Method for Thermal Oxidation Stability of Aviation Turbine Fuels) measures the thermal oxidative stability of jet fuels under elevated temperature and pressure conditions. When jet fuels fail ASTM D3241, either at the refinery or in the distribution system, there can be supply disruptions and financial losses. Understanding the causes of poor thermal oxidative stability in jet fuels could help prevent or mitigate issues. In order to develop a deeper understanding of the molecular precursors that lead to ASTM D3241 failures, a number of analytical methodologies and data treatment techniques have been developed, applied, and reported here. Statistical analysis of LC/MS ESI data from jet fuels with varying thermal oxidative stabilities allows for the identification of molecules that are significant to ASTM D3241 failures. Differential statistical analysis of LC/MS ESI data from jet fuels before and after thermal oxidative stressing in a QCM reactor elucidates which significant molecules are being consumed during oxidation and which molecules are increasing in abundance. The analysis of thermal oxidative deposits that form during thermal oxidative stressing in the QCM reactor allows for the insight into the molecular components of the deposits. Attapulgus clay removes the polar molecules that lead to thermal oxidative stability issues in the refinery. Extraction of Attapulgus clay that has been used in a refinery to filter jet fuel with a series of solvents removes the polar molecules into a series of fractions. The subsequent analysis of the fractions by comprehensive GCxGC/MS leads to the identification of the different homologous series of molecules that are removed by the clay.
The analyses developed and employed here are shown to be particularly useful for the analysis of trace polar nitrogen and oxygen containing molecules. Similar homologous series of molecules are identified across all of the different analyses. It is also clear from some of the analyses, along with previously reported data in the literature, that reactive sulfur-containing molecules are significant to poor thermal oxidative stability as measured by ASTM D3241 and to the formation of thermal oxidative deposits. There is still an opportunity to find methodologies to better characterize the sulfur species present and correlate them to the data that is reported here.
|
52 |
Relationship Between Compressive Strength of Different Shape and Thickness Specimens of Type S MortarMoffett, Theodore James 01 December 2018 (has links)
Mortar is the cementitious binding material placed between masonry blocks to create a composite system. The American Society of Testing and Materials (ASTM), along with other organizations, have established the testing of prismatic mortar specimens for evaluating mechanical properties, like compressive strength. Mortar joints, however, possess vastly different characteristics compared to prismatic specimens, especially in terms of geometry and water content. These differences prevent a direct comparison of compressive strength between prismatic specimens and actual mortar joints in the assembly. The objective of this study was to analyze Type S mortar joints, with particular emphasis on specimen shape and water content, to draw accurate comparisons of compressive strength to ASTM prescribed mortar prismatic specimens.To examine the effect of water on mortar compressive strength, three different water contents were evaluated across nearly all testing series. Cubic (2-in) and cylindrical (2 by 4-in) mortar specimens were prepared and tested according to ASTM guidelines to verify the compressive strength relationship described by ASTM and to be used as comparative data. In addition, a small masonry wall was assembled and cured in a laboratory to simulate true properties of mortar joints. Mortar joints subjected to testing were a combination of thin slices cut from prismatic specimens as well as in-place bed joints cured between concrete masonry units (CMU). Two unorthodox test methods, the double punch test (DPT) and helix pull-out test (HPT), were selected as methods for assessing mortar joints. In addition, confining effects from neighboring material common to DPT were evaluated as a function of specimen face dimensions. The compressive strength ratio obtained through testing of 2-in cubic and 2 by 4-in cylindrical specimens was lower than ASTM recommendations. This may have been in part due to testing cylindrical specimens with rough surfaces and no capping material. DPT confinement on 2-in square and 2-in diameter circular specimens was found to be equivalent. Thinly sliced specimens tested in DPT showed increases in compressive strength as water content and specimen thickness decreased. As a whole, DPT results on thin mortar slices showed promise for accurate comparison to prismatic mortar specimens. In-place mortar joints tested in HPT showed moderate to high scatter. In addition, evaluation via HPT was determined to be more appropriate for qualitative rather than quantitative assessments of in-situ mortar.
|
53 |
Fatigue Crack Growth Tests and Analyses on a Ti-6Al-4V (STOA) Alloy using the Proposed ASTM Procedures for Threshold TestingMote, Aniket Chandrakant 14 December 2018 (has links)
This thesis investigates fatigue crack growth rate behavior in the threshold and near-threshold regimes for a Ti-6Al-4V (STOA) alloy using two proposed ASTM procedures- (1) load-shedding (LS) using a larger load-shed rate than the current ASTM Standard E647 load-reduction (LR) test procedure, and (2) compression pre-cracking constant-amplitude (CPCA) or load-increasing (CPLI) and load-shedding (CPLS). Tests were conducted at a low stress ratio (R = 0.1) on compact C(T) specimens of two different widths (W = 51 and 76 mm) and threshold fatigue crack growth rates were generated. These test data were compared to previous test data produced from the same batch of material using the current LR and the CPCA test procedure. While no test procedure provided an exact representation of the threshold value (?Kth), the compression pre-cracking (CP) procedures were the most promising. The LR, LS, and CPLS test procedures were influenced by prior loading-history and various crack-closure mechanisms, leading to higher ?Kth values and slower crack growths in the threshold regime. The LS tests (at shed-rates of -0.08,-0.32, and -0.95 mm-1) generated ?Kth values that were 15% to 32% higher than the estimated threshold stress-intensity factor range (?*Kth)R=0.1. The CP test procedures are a more accurate alternative for developing near-threshold and threshold fatigue crack growth rates. The CPLS test procedure produced a ?Kth value that was 10% higher than (?*Kth)R=0.1. LR and LS tests produced different ?Kth values as a function of the specimen width for the given load ratio. The CP test procedures produced consistent crack growth rates over the same range of ?K values examined, independent of the specimen width. Further research is required for developing test procedure(s) capable of providing a more definitive representation of the ?Kth value and closureree fatigue crack growth rates in the threshold regime.
|
54 |
Optimization and reaction kinetics of the production of biodiesel from castor oil via sodium methoxide-catalyzed methanolysisCrymble, Scott David 01 May 2010 (has links)
This paper studies castor oil’s potential as a biodiesel feedstock. Base-catalyzed transesterification batch reactions were conducted at various experimental conditions while measuring the concentration of the reaction components over time. A gas chromatograph with a flame-ionization detector analyzed these samples. A factorial design of experiments was used to determine how conversion was affected by reaction temperature, sodium methoxide concentration, and ratio of methanol to oil. Conversion was maximized (0.9964) at 30 °C, 0.5% catalyst, and 9:1 molar ratio. The concentration data were used to study the reaction kinetics. Modeling the reaction as three equilibria yielded six rate constants. These values indicate that castor oil transesterifies faster than soybean oil. The fuel properties were determined by ASTM D 6751. Viscosity was excessively high, but specifications were met for the remaining tests. Despite the promising yield and kinetics of the reaction, the fuel viscosity limits castor oil’s viability as a biodiesel feedstock.
|
55 |
DEVELOPMENT OF MASS SPECTROMETRIC METHODS FOR THE ANALYSIS OF BASE OILS AND JET FUELS AND FOR THE EXPERIMENTAL MEASUREMENT OF PROTON AFFINITIES OF ALKANESWanru Li (13039626) 13 July 2022 (has links)
<p>Petroleum products, such as base oils and jet fuels, play an essential role in modern society since they are necessary as lubricants for engines and as fuels for airplanes. The ability to accurately characterize these petroleum products is crucial for the successful generation of these compound mixtures with desirable properties. Unfortunately, analysis of petroleum products remains challenging due to the fact that they often contain thousands of different hydrocarbons. The petroleum industry relies heavily on powerful analytical techniques to evaluate the chemical compositions of petroleum products in order to improve their crude oil refinery procedures. Tandem mass spectrometry is the only analytical technique that has the potential to provide both elemental composition and structural information for individual analytes in complex mixtures. When coupled to chromatography, different tandem mass spectrometry methods facilitate the analysis of individual hydrocarbons in complex mixtures and therefore provide more detailed compositional information for petroleum products than other analytical methods. Fundamental studies that explore the physical and chemical properties of hydrocarbons also facilitate the development of new mass spectrometric ionization techniques for these analytes. The research discussed in this dissertation can be divided into three parts: the development and validation of new quantitation methodology for compounds representing twelve different hydrocarbon types in jet fuels (Chapters 3), the comparison of (+)APCI MS and GCxGC/(+)EI TOF MS for the analysis of saturated and aromatic hydrocarbons in group III heavy base oils (Chapter 4), and experimental measurement of proton affinities of alkanes (Chapter 5).</p>
|
56 |
Modeling Of Membrane Solute Mass Transfer In Ro/nf Membrane SystemsZhao, Yu 01 January 2004 (has links)
Five articles describing the impact of surface characteristics, and development of mass transfer models for diffusion controlled membrane applications are published in this dissertation. Article 1 (Chapter 3) describes the impact of membrane surface characteristics and NOM on membrane performance for varying pretreatment and membranes during a field study. Surface charge, hydrophobicity and roughness varied significantly among the four membranes used in the study. Membrane surface characteristics, NOM and SUVA measurements were used to describe mass transfer in a low pressure RO integrated membrane system. Inorganic and organic solute and water mass transfer coefficients were systematically investigated for dependence on membrane surface properties and NOM mass loading. Inorganic MTCs were accurately described by a Gaussian distribution curve. Water productivity, NOM rejection and inorganic rejection increased as membrane surface charge and NOM loading increased. Inorganic MTCs were also correlated to surface hydrophobicity and surface roughness. The permeability change of identical membranes was related to NOM loading, hydrophobicity and roughness. Organic fouling as measured by water, organic and inorganic mass transfer was less for membranes with higher hydrophilicity and roughness. Article 2 (Chapter 4) describes the development of a diffusion controlled solute mass transfer model to assess membrane performance over time. The changing mass transfer characteristics of four low-pressure reverse osmosis (LPRO) membranes was correlated to feed stream water quality in a 2000 hour pilot study. Solute mass transfer coefficients (MTCs) were correlated to initial solute MTCs, solute charge, feed water temperature, monochloramine loading and organic loading (UV254). The model can be used to predict cleaning frequency, permeate water quality and sensitivity of permeate water quality to variation of temperature, organic and monochloramine mass loading. Article 3 (Chapter 5) describes a comparison of the long standing method of assessing membrane performance (ASTM D 45160 and another approach using mass transfer coefficients (MTCs) from the homogenous solution diffusion model (HSDM) using a common data set, water productivity and standardized salt passage. Both methods were shown to provide identical assessments of water productivity, however different assessments of salt passage. ASTM D 4516 salt passage is normalized for pressure and concentration and does not show the effects of flux, recovery, temperature or specific foulants on salt passage. However the MTC HSDM method is shown to consider all those effects and can be easily used to predict membrane performance at different sites and times of operation, whereas ASTM D 45160 can not. The HSDM MTC method of membrane evaluation is more versatile for assessment of membrane performance at varying sites and changing operational conditions. Article 4 (Chapter 6) describes the development of a fully integrated membrane mass transfer model that considers concentration, recovery and osmotic pressure for prediction of permeate water quality and required feed stream pressures. Osmotic pressure is incorporated into the model using correction coefficients that are calculated from boundary conditions determined from stream osmotic pressures of the feed and concentrate streams. Comparison to homogenous solution diffusion model (HSDM) with and without consideration of osmotic pressure and verification of IOPM using independently developed data from full and pilot scale plants is presented. The numerical simulation and statistical assessment show that osmotic pressure corrected models are superior to none-osmotic pressure corrected models, and that IOPM improves model predictability. Article 5 (Chapter 7) describes the development and comparison of a modified solution diffusion model and two newly developed artificial neural network models to existing mechanistic or empirical models that predict finished water quality for diffusion controlled membranes, which are generally restricted to specific solute MTCs that are site and stage specific. These models compensate for the effects of system flux, recovery and feed water quality on solute MTC and predict permeate water quality more accurately than existing models.
|
57 |
Effects Of The Soil Properties On The Maximum Dry Density Obtained FroArvelo, Andres 01 January 2004 (has links)
In the construction of highways, airports, and other structures, the compaction of soils is needed to improve its strength. In 1933 Proctor developed a laboratory compaction test to determine the maximum dry density of compacted soils, which can be used for specifications of field compaction. The Compaction of soils is influenced by many factors, the most common are the moisture content, the soil type and the applied compaction energy. The objective of this research is the analysis of the maximum dry density values based on the soil classification and characterization. The method of choice in the determination of the maximum dry density from different soils was the Standard Proctor Test following the procedure for the standard Proctor test as is explained in ASTM Test Designation D-698. From this investigation, the maximum dry density of eight types of sands was obtained, the sands were classified by using the Unified Soil Classification System. The influence on the maximum dry density of the type of sands, type of fines, amount of fines and distribution of the grain size was determined, followed by a sensitivity analysis that measured the influence of these parameters on the obtained maximum dry density. The research revealed some correlations between the maximum dry density of soils with the type of fines, the fines content and the Uniformity Coefficient. These correlations were measured and some particular behavioral trends were encountered and analyzed. It was found that well-graded sands have higher maximum dry density than poorly graded when the soils have the same fines content, also it was encountered that plastic fines tend to increase the maximum dry density.
|
58 |
Bench Scale Characterization of Joints and CoatingsKulkarni, Akhilesh 03 July 2023 (has links)
The ASTM E119 is a large-scale test used to qualify assemblies for fire resistance, including heat transmission and structural integrity. The test requires specialized furnaces and full-scale assemblies that are 3.0 m (10 ft) or more on each side, making it very expensive to perform.
In this study, we investigated the feasibility of the scaling methodology for a reduced-scale fire resistance test on different types of wood-based structures, specifically commercially available intumescent coating applied onto wood and bolted lap joints in wood. We build upon a previously developed scaling methodology for wood and gypsum boards, which integrated geometric scaling, Fourier number time scaling, and furnace boundary condition matching. Intumescent coating presents a particular challenge in scaling in that it expands when exposed to fire conditions. To account for this expansion, we identified a relationship between initial dry film thickness and final expanded thickness through cone calorimeter tests and integrated it into a modified scaling methodology. This approach was then validated through fire exposure tests in furnace on wood samples painted with intumescent coating at full, half, and quarter scales. Finally, we demonstrated the scaling laws for joints under combined thermo-structural loading, by subjecting wood-based half-lap joint samples to combined bending and thermal loading at half and quarter scale. The samples were subjected to static three-point bending with the load scaled to achieve structural similitude, while simultaneously being exposed to a scaled fire exposure on the bottom surface. Our study provides insights into the practical application of scaling methodology for testing the fire resistance of joints and fire-resistant coated wood, paving the way for more cost-effective and quicker fire testing for the wood-based composite industry. / Master of Science / The ASTM E119 is a critical test standard that evaluates the fire resistance of various building materials, including wood-based structures. However, the standard tests are quite expensive due to the need for specialized equipment and large-scale samples. In this study, we explored the potential of using a scaled-down fire resistance test on different types of wood-based materials, including commercially available fire-resistant coated wood and joints.
We built on existing scaling methods for wood and gypsum boards and adapted it to account for the unique properties of intumescent coating - a fire-resistant material that expands when exposed to high temperatures. By conducting a series of tests, we developed a modified scaling approach to accommodate the expansion of the coating.
We then validated this new method by performing fire exposure tests at various scales on wood samples coated with intumescent coating. Finally, we adapted the scaling methods to account for wood based bolted joints. We tested the fire resistance of wood-based half-lap joints under combined heat and structural stress at smaller scales.
Our study offers valuable insights into a more cost-effective and efficient method for testing fire resistance in wood-based structures. By providing a reliable scaling approach for fire-resistant coated wood and joints, our work has the potential to make fire testing more accessible for the wood composite industry, ultimately leading to safer and better-performing buildings.
|
59 |
Structural Concrete Design with High-Strength Steel ReinforcementReis, Jonathan M. 06 August 2010 (has links)
No description available.
|
60 |
UV Laser Treatment of Tire Reinforcing Materials for Improved Adhesion to RubberLIU, XIAOXIAO January 2015 (has links)
No description available.
|
Page generated in 0.0548 seconds