• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 130
  • 29
  • 15
  • 11
  • 11
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 265
  • 62
  • 60
  • 53
  • 46
  • 31
  • 30
  • 29
  • 28
  • 25
  • 25
  • 21
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

The Light Curve Simulation and Its Inversion Problem for Human-Made Space Objects

Siwei Fan (9193685) 03 August 2020 (has links)
Shape and attitude of near-Earth objects directly affect the orbit propagation via drag and solar radiation pressure. Obtaining information beyond the object states (position and velocity) is integral to identifying an object. It also enables tracing origin and can improve the orbit accuracy. For objects that have a significant distance to the observer, only non-resolved imaging is available, which does not show any details of the object. So-called non-resolved light curve measurements, i.e. photometric measurements over time can be used to determined the shape of space objects using a two step inversion scheme. It follows the procedure to first determine the Extended Gaussian Image and then going through the shape reconstruction process to retrieve the closed shape even while measurement noise is present. Furthermore, it is also possible to generate high confidence candidates when follow-up observations are provided through a multi-hypotheses process.
232

Magnificent beasts of the Milky Way: Hunting down stars with unusual infrared properties using supervised machine learning

Ahlvind, Julia January 2021 (has links)
The significant increase of astronomical data necessitates new strategies and developments to analyse a large amount of information, which no longer is efficient if done by hand. Supervised machine learning is an example of one such modern strategy. In this work, we apply the classification technique on Gaia+2MASS+WISE data to explore the usage of supervised machine learning on large astronomical archives. The idea is to create an algorithm that recognises entries with unusual infrared properties which could be interesting for follow-up observations. The programming is executed in MATLAB and the training of the algorithms in the classification learner application of MATLAB. Each catalogue; Gaia+2MASS+WISE contains ~109, 5×108 and 7×108 (The European Space Agency 2019, Skrutskie et al. 2006, R. M. Cutri IPAC/Caltech) entries respectively. The algorithms searches through a sample from these archives consisting of 765266 entries, corresponding to objects within a <500 pc range. The project resulted in a list of 57 entries with unusual infrared properties, out of which 8 targets showed none of the four common features that provide a natural physical explanation to the unconventional energy distribution. After more comprehensive studies of the aforementioned targets, we deem it necessary for further studies and observations on 2 out of the 8 targets (Nr.1 and Nr.8 in table 3) to establish their true nature. The results demonstrate the applicability of machine learning in astronomy as well as suggesting a sample of intriguing targets for further studies. / Inom astronomi samlas stora mängder data in kontinuerligt och dess tillväxt ökar snabbt för varje år. Detta medför att manuella analyser av datan blir mindre och mindre lönsama och kräver istället nya strategier och metoder där stora datamängder snabbare kan analyseras. Ett exempel på en sådan strategi är vägledd maskininlärning. I detta arbete utnyttjar vi en vägled maskininlärnings teknik kallad klassificering. Vi använder klassificerings tekniken på data från de tre stora astronomiska katalogerna Gaia+2MASS+WISE för att undersöka användningen av denna teknik på just stora astronomiska arkiv. Idén är att skapa en algorithm som identifierar objekt med okontroversiella infraröda egenskaper som kan vara intressanta för vidare observationer och analyser. Dessa ovanliga objekt är förväntade att ha en lägre emission i det optiska våglängdsområdet och en högre emission i det infraröda än vad vanligtvis är observerad för en stjärna. Programmeringen sker i MATLAB och träningsprocessen av algoritmerna i MATLABs applikation classification learner. Algoritmerna söker igenom en samling data bestående av 765266 objekt, från katalogerna Gaia+2MASS+WISE. Dessa kataloger innehåller totalt ~109, 5×108 och 7×108 (The European Space Agency 2019, Skrutskie et al. 2006, R. M. Cutri IPAC/Caltech) objekt vardera. Det begränsade dataset som algoritmerna söker igenom motsvarar objekt inom en radie av <500 pc. Många av de objekt som algoritmerna identifierade som ”ovanliga” tycks i själva verket vara nebulösa objekt. Den naturliga förklaringen för dess infraröda överskott är det omslutande stoft som ger upphov till värmestrålning i det infraröda. För att eliminera denna typ av objekt och fokusera sökningen på mer okonventionella objekt gjordes modifieringar av programmen. En av de huvudsakliga ändringarna var att introducera en tredje klass bestående av stjärnor inneslutna av stoft som vi kallar "YSO"-klassen. Ytterligare en ändring som medförde förbättrade resultat var att introducera koordninaterna i träningen samt vid den slutgiltiga klassificeringen och på så vis, identifiering av intressanta kandidater. Dessa justeringar resulterade i en minskad andelen nebulösa objekt i klassen av ”ovanliga” objekt som algoritmerna identifierade. Projektet resulterade i en lista av 57 objekt med ovanliga infraröda egenskaper. 8 av dessa objekt påvisade ingen av det fyra vanligt förekommande egenskaperna som kan ge en naturlig förklaring på dess överflöd av infraröd strålning. Dessa egenskaper är; nebulös omgivning eller påvisad stoft, variabilitet, Hα emission eller maser strålning. Efter vidare undersökning av de 8 tidigare nämnda objekt anser vi att 2 av dessa behöver vidare observationer och analys för att kunna fastslå dess sanna natur (Nr.1 och Nr.8 i tabell 3). Den infraröda strålningen är alltså inte enkelt förklarad för dessa 2 objekt. Resultaten av intressanta objekt samt övriga resultat från maskininlärningen, visar på att klassificeringstekniken inom maskininlärning är användbart på stora astronomiska datamängder.
233

Uncovering the Efficiency Limits to Obtaining Water: On Earth and Beyond

Akshay K Rao (12456060) 26 April 2022 (has links)
<p> Inclement challenges of a changing climate and humanity's desire to explore extraterrestrial environments both necessitate efficient methods to obtain freshwater. To accommodate next generation water technology, there is a need for understanding and defining the energy efficiency for unconventional water sources over a broad range of environments. Exergy analysis provides a common description for efficiency that may be used to evaluate technologies and water sources for energy feasibility. This work uses robust thermodynamic theory coupled with atmospheric and planetary data to define water capture efficiency, explore its variation across climate conditions, and identify technological niches and development needs.  </p> <p><br></p> <p> We find that desalinating saline liquid brines, even when highly saline, could be the most energetically favorable option for obtaining water outside of Earth. The energy required to access water vapor may be four to ten times higher than accessing ice deposits, however it offers the capacity for decentralized systems. Considering atmospheric water vapor harvesting on Earth, we find that the thermodynamic minimum is anywhere from 0x (RH≥ 100%) to upwards of 250x (RH<10\%) the minimum energy requirement of seawater desalination. Sorbents, modelled as metal organic frameworks (MOFs), have a particular niche in arid and semi-arid regions (20-30%). Membrane-systems are best at low relative humidity and the region of applicability is strongly affected by the vacuum pumping efficiency. Dew harvesting is best at higher humidity and fog harvesting is optimal when super-saturated conditions exist. Component (e.g., pump, chiller, etc.) inefficiencies are the largest barrier in increasing process-level efficiency and strongly impact the regions optimal technology deployment. The analysis elucidates a fundamental basis for comparing water systems energy efficiency for outer space applications and provides the first thermodynamics-based comparison of classes of atmospheric water harvesting technologies on Earth.</p>
234

Advanced wavefront sensing and astrometric techniques for the next generation of extremely large telescopes

Taheri, Mojtaba 29 April 2022 (has links)
The new generation of giant ground-based telescopes will see their first light this decade. These state-of-the-art facilities will significantly surpass the resolving power of modern space-based observatories such as the James Webb telescope, thanks to their enormous aperture size and adaptive optics (AO) facilities. Without AO, atmospheric turbulence would degrade the image quality of these enormous telescopes to that of a 50 cm amateur one. These extremely large telescopes (ELTs) will further benefit from a particular branch of AO called multi-conjugate adaptive optics (MCAO), which provides an extremely high resolving power over a much wider field of view as compared to classical AO systems. The design and fabrication of such systems, as well as their optimal use for science operation, pose a great challenge as they are an order of magnitude more complicated than current AO systems. To face such a challenge, the combined knowledge of MCAO system design and fabrication, working in tandem with scientific insights into new astronomy science cases, is an extremely valuable and essential pairing. This thesis is an effort to not only contribute to the design and fabrication of ELT MCAO facilities, but also provide guidance on the optimal method to utilize these giant telescopes to achieve unprecedented astrometric measurements. On the instrumentation side, in partnership with the National Research Council of Canada's - Herzberg Astronomy and Astrophysics Institute as well as W.M. Keck Observatory in Hawaii, I was involved in the design and fabrication of a cutting edge new wavefront sensor, which is the eye of an AO system. I performed opto-mechanical design and verification studies for components of the Keck infrared pyramid wavefront sensor (IR-PWFS) as well as the Keck Planet Imager and characterizer (KPIC) instrument, which have both been commissioned and are in science operation. Furthermore, I designed the alignment plan and participated in the modification and alignment operation of a few components on the Keck II adaptive optics bench on the summit of Mauna Kea. To pave the way for the design verification of future MCAO systems for ELTs, I proposed a new method for an old challenge in the path of AO system design and verification: a flexible method for precise intensity pattern injection into laboratory AO benches. AO benches are the backbone of instrument design and modeling. One of the challenges especially important for the future generation of MCAO systems for ELTs is the verification of the effect of shadowed regions on the primary mirror. During my PhD, I successfully demonstrated the feasibility of a new proposed method to accurately model the telescope pupil. This work was done in partnership with the Laboratoire d'Astrophysique de Marseille (LAM) in France. The method I developed at LAM will be implemented in the AO Lab at NRC Herzberg Astronomy and Astrophysics. As an observational astronomer, I focused on developing methods for making optimal astrometric measurements with MCAO-enabled telescopes. The expected unparalleled astrometric precision of ELTs comes with many unprecedented challenges that if left unresolved, would jeopardize the success of these facilities as they would not be able to reach their science goals. I used observations with the only available MCAO system in science operation, the Gemini MCAO system on the 8-meter Gemini South telescope in Chile, to develop and verify a pipeline specifically designed for very high-precision astrometric studies with MCAO-fed imagers. I successfully used the pipeline to provide the precise on-sky differential distortion of the Gemini South telescope and its MCAO facilities by looking deep into the core of globular cluster NGC~6723. Using this pipeline, I produced high quality proper motions with an uncertainty floor of $\sim 45$\,$\mu$as~yr$^{-1}$ as well as measured the proper motion dispersion profile of NGC~6723 from a radius of $\sim 10$ arcseconds out to $\sim 1$\,arcminute, based on $\sim 12000$ stars. I also produced a high-quality optical-near-infrared color magnitude diagram which clearly shows the extreme horizontal branch and main-sequence knee of this cluster. / Graduate
235

Optimisation de requêtes spatiales et serveur de données distribué - Application à la gestion de masses de données en astronomie / Spatial Query Optimization and Distributed Data Server - Application in the Management of Big Astronomical Surveys

Brahem, Mariem 31 January 2019 (has links)
Les masses de données scientifiques générées par les moyens d'observation modernes, dont l’observation spatiale, soulèvent des problèmes de performances récurrents, et ce malgré les avancées des systèmes distribués de gestion de données. Ceci est souvent lié à la complexité des systèmes et des paramètres qui impactent les performances et la difficulté d’adapter les méthodes d’accès au flot de données et de traitement.Cette thèse propose de nouvelles techniques d'optimisations logiques et physiques pour optimiser les plans d'exécution des requêtes astronomiques en utilisant des règles d'optimisation. Ces méthodes sont intégrées dans ASTROIDE, un système distribué pour le traitement de données astronomiques à grande échelle.ASTROIDE allie la scalabilité et l’efficacité en combinant les avantages du traitement distribué en utilisant Spark avec la pertinence d’un optimiseur de requêtes astronomiques.Il permet l'accès aux données à l'aide du langage de requêtes ADQL, couramment utilisé.Il implémente des algorithmes de requêtes astronomiques (cone search, kNN search, cross-match, et kNN join) en exploitant l'organisation physique des données proposée.En effet, ASTROIDE propose une méthode de partitionnement des données permettant un traitement efficace de ces requêtes grâce à l'équilibrage de la répartition des données et à l'élimination des partitions non pertinentes. Ce partitionnement utilise une technique d’indexation adaptée aux données astronomiques, afin de réduire le temps de traitement des requêtes. / The big scientific data generated by modern observation telescopes, raises recurring problems of performances, in spite of the advances in distributed data management systems. The main reasons are the complexity of the systems and the difficulty to adapt the access methods to the data. This thesis proposes new physical and logical optimizations to optimize execution plans of astronomical queries using transformation rules. These methods are integrated in ASTROIDE, a distributed system for large-scale astronomical data processing.ASTROIDE achieves scalability and efficiency by combining the benefits of distributed processing using Spark with the relevance of an astronomical query optimizer.It supports the data access using the query language ADQL that is commonly used.It implements astronomical query algorithms (cone search, kNN search, cross-match, and kNN join) tailored to the proposed physical data organization.Indeed, ASTROIDE offers a data partitioning technique that allows efficient processing of these queries by ensuring load balancing and eliminating irrelevant partitions. This partitioning uses an indexing technique adapted to astronomical data, in order to reduce query processing time.
236

Reconstruction libre de lentilles gravitationnelles de type galaxie-galaxie avec les machines à inférence récurentielle

Adam, Alexandre 12 1900 (has links)
Les lentilles gravitationnelles de type galaxie-galaxie se produisent lorsque la lumière d'une galaxie en arrière-plan est déviée par le champ gravitationnel d'une galaxie en avant-plan, formant des images multiples ou même des anneaux d'Einstein selon le point de vue d'un observateur sur Terre. Ces phénomènes permettent non seulement d'étudier les galaxies lointaines, magnifiées par la galaxie-lentille, mais aussi de comprendre la distribution de masse de la galaxie-lentille et de son environnement, une opportunité unique pour sonder la matière noire contenue dans ces galaxies. Or, les méthodes traditionnelles pour analyser ces systèmes requièrent une quantité significative de temps ordinateur (de quelques heures à quelques jours), sans compter le temps des experts pour faire converger les analyses MCMC requises pour obtenir les paramètres d'intérêts. Ce problème est significatif, considérant qu'il est projeté que les grands relevés du ciel comme ceux qui seront menés aux observatoires Rubin et Euclid découvrirons plusieurs centaines de milliers de lentilles gravitationnelles. De plus, le Télescope géant européen (ELT), faisant usage de la technologie d'optique adaptative, et le télescope spatial James Webb, vont nous offrir une vue sans précédent de ces systèmes, avec un pouvoir de résolution qui rendra possible certaines analyses comme la recherche de halo de matière noire froide, longtemps prédite par le modèle cosmologique standard $\Lambda$CDM. Les approximations traditionnelles faites pour simplifier la reconstruction des lentilles gravitationnelles ne seront plus valides dans ce régime. Dans ce mémoire, je présente un travail qui s'attaque à ces deux problèmes. Je présente une méthode d'optimisation basée sur les machines à inférence récurentielle pour reconstruire deux images, soit celle d'une galaxie en arrière-plan et une image pour la distribution de masse de la galaxie en avant-plan. La représentation paramétrique choisie a le potentiel de reconstruire une classe très large de lentilles gravitationnelles, incluant des halos et sous-halos de matière noire, ce qu'on démontre dans ce travail en utilisant des profiles de densité réalistes provenant de la simulation cosmologique hydrodynamique IllustrisTNG. Nos reconstructions atteignent un niveau de réalisme jamais atteint auparavant et s'exécutent sur une fraction du temps requis pour exécuter une analyse traditionnelle, soit un pas significatif vers une méthode pouvant adresser le défi d'analyser autant de systèmes complexes et variés en un temps à l'échelle humaine. / Galaxy-Galaxy gravitational lenses is a phenomenon that happens when the light coming from a background galaxy is bent by the gravitational field of a foreground galaxy, producing multiple images or even Einstein ring images of the background source from the point of view of an observer on Earth. These phenomena allow us to study in detail the morphology of the background galaxy, magnified by the lens, but also study the mass density distribution of the lens and its environment, thus offering a unique probe of dark matter in lensing galaxies. Traditional methods studying these systems often need significant compute time (from hours to days), and this is without taking into account the time spent by experts to make the MCMC chains required to obtain parameters of interest converge. This problem is significant, considering that large surveys from observatories like Rubin and Euclid are projected to discover hundreds of thousands of gravitational lenses. Moreover, the Extremely Large Telescope (ELT), using adaptive optics, and the James Webb Space Telescope will offer an unprecedented glimpse of these systems, with a resolving power predicted to enable searches for cold dark matter subhalos — objects long predicted by the standard cosmological model CDM. Approximations used to make analysis tractable in traditional methods will no longer be valid in that regime. In this thesis, I present a method that aims to address these two issues. The method, based on Recurrent Inference Machines (RIM), reconstructs two pixelated maps, one for the background source and another for the mass density map of the foreground lensing galaxy. This free-form parametric representation has the potential to reconstruct a large class of gravitational lenses, including those with dark matter halos and subhalos, which we demonstrate using realistic mass density profiles from the cosmological hydrodynamic simulation IllustrisTNG. Our method can achieve an unmatched level of realism in a fraction of the time required by traditional methods, which is a significant step toward solving the challenge of studying such a large number of complex and varied systems in a human timescale.
237

Simulations de détection d’atmosphères d’exoplanètes avec ANDES

Beaudoin, André 06 1900 (has links)
Le European Extremely Large Telescope présentement en construction au Chili, sera le plus grand télescope optique jamais construit, avec son miroir primaire de 39 mètres de diamètre. Un de ses instruments, ANDES (ArmazoNes high Dispersion Echelle Spectrograph), combinera l’optique adaptative et la spectroscopie à haute dispersion dans les bandes photométriques YJH pour permettre notamment l’étude de la composition chimique d’atmosphères d’exoplanètes potentiellement habitables. La détection de la vie sur une exoplanète candidate commence nécessairement par l’étude de son atmosphère, et spécifiquement sa composition chimique. Celle-ci peut en effet révéler la présence de biosignatures, c’est-à-dire la signature spectrale de molécules qui ne pourraient exister sans la présence de la vie. Une paire de molécules particulièrement intéressante est la paire dioxygène (O2) et méthane (CH4), soient deux molécules qui peuvent être créées par des processus biotiques, mais qui, laissées à elles-mêmes, réagissent ensemble dans l’atmosphère pour générer de l’eau (H2O) et du dioxyde de carbone (CO2) jusqu’à la déplétion de l’une des deux (Thompson et al., 2022). La présence simultanée d’O2 et de CH4 nécessite donc des réactions chimiques hors équilibre comme celles associées avec l’activité biologique. ANDES sera équipé de tous les modules théoriquement nécessaires pour détecter la lumière réfléchie d'une exoplanète, incluant une interface d'optique adaptative qui minimise la lumière parasite de l'exoplanète localisée tout près du coeur de l'étoile, une unité de champ intégral permettant de disséquer l'image de l'étoile en des dizaines de spaxels, chacun alimentant un spectrographe infrarouge à haute dispersion. Des techniques statistiques bayesiennes sont ensuite utilisées pour détecter le signal atmosphérique de l'exoplanète enfoui dans le spectre de l'étoile. Ce travail décrit des simulations détaillées de tous ces modules afin de déterminer les capacités d’ANDES à détecter l’atmosphère d’exoplanètes potentiellement habitables, notamment Proxima b, la plus rapprochée du Système Solaire. Les simulations révèlent que si Proxima b a une atmosphère identique à celle de la Terre, l’eau y serait détectable en moins d'une nuit (6 heures), alors que les détections d’O2, de CO2 et de CH4 nécessiteraient jusqu’à 320, 420 et 1200 heures d’observation, respectivement. / The European Extremely Large Telescope, currently under construction in Chile, will be the largest telescope ever built, with its primary mirror measuring 39 meters in diameter. One of its instruments, ANDES (ArmazoNes high Dispersion Echelle Spectrograph), will combine adaptive optics and high dispersion dpectroscopy in the Y JH photometric bands. This combination will allow the study of the chemical composition of atmospheres of potentially habitable exoplanets. The search for life on a candidate exoplanet necessitates the study of its atmosphere, specically its chemical composition. This can reveal the presence of biosignatures, i.e the spectral signature of molecules that cannot exist without life. One inriguing pair of molecules is dioxygen (O2) and methane (CH4). Both can be created through biotic processes, but left to themselves, they form water (H2O) and carbon dioxide (CO2) until one of the two is depleted. The simultaneous presence of O2 and CH4 requires out-of-equilibrium chemical reactions, such as those associated with biological activity. ANDES will be equipped with all the crucial modules to detect the reflected light from an exoplanet. It includes an adaptive optics front-end interface that minimizes the stray light from the exoplanet located very close to the star’s core, an integrated field unit that dissects the star’s image into dozens of spaxels, each feeding a high-dispersion infrared spectrograph. Bayesian statistics are then used to detect the exoplanet’s atmospheric signal buried within the star’s spectrum This work describes detailed simulations of all these modules to determine ANDES’ ca- pabilities in detecting the atmosphere of potentially habitable exoplanets, notably Proxima b, the closest to the Solar System. The simulations reveal that if Proxima b has an atmo- sphere similar to Earth’s, water could be detectable in less than one night (6 hours), while detections of O2, CO2 and CH4 could require up to 320, 420 and 1200 hours of observations, respectively.
238

Accélération du lentillage gravitationnel à plans multiples par apprentissage profond

Wilson, Charles 04 1900 (has links)
Le "modèle standard" actuel de la cosmologie est celui de ΛCDM, décrivant un Univers en expansion accélérée ainsi qu’une structure de matière sombre froide formée en halos, sur lesquels s’assemblent les galaxies. Malgré les nombreuses confirmations observationnelles de ses prédictions, il existe d’importantes tensions entre les mesures de la distribution de structure sombre aux petites échelles de l’Univers et ce qui serait attendu de ΛCDM. Cependant, ces halos légers de matière sombre, qui sont prédit d’abonder à travers le cosmos, n’hébergent pas de galaxies lumineuses et sont donc très difficiles à observer directement. Leur présence peut toutefois être détectée dans les lentilles gravitationnelles fortes de type galaxie-galaxie, un phénomène se produisant lorsque la lumière d’une galaxie d’arrière-plan est fortement déviée par le champ gravitationnel d’une galaxie d’avantplan, formant des images multiples et des arcs étendus. Les halos distribués en ligne de visée de tels systèmes, ainsi que ceux imbriqués dans la galaxie lentille, peuvent causer des perturbations gravitationnelles dans les images de galaxies lentillées. La détection de ces effets infimes dans des observations de lentilles gravitationnelles est faite par des méthodes statistiques Bayésiennes, qui nécéssitent des centaines de milliers de simulations de la contribution de ces perturbateurs à la déflexion de la lumière. Traditionnellement, la modélisation du lentillage par les halos en ligne de visée s’est faite avec le formalisme du lentillage à plans multiples, qui souffre d’une nature récursive peu efficace. De plus, il est prédit par le modèle ΛCDM que la majorité des systèmes de lentilles gravitationnelles comporteraient davantage de halos en ligne de visée que de sous-halos imbriqués dans la galaxie lentille, motivant une modélisation détaillée des effets de ligne de visée. Dans un contexte d’analyse Bayésienne, l’approche du lentillage à plans multiples représente une échelle de temps de plusieurs jours pour l’analyse d’un seul système. En considérant que des grands relevés du ciel comme ceux de l’Observatoire Vera Rubin et du télescope spatial Euclid sont projetés de découvrir des centaines de milliers de lentilles gravitationnelles, l’effort de contraindre la distribution de matière sombre aux petites échelles se voit confronté à ce qui pourrait être un insurmontable problème de temps de calcul. Dans ce mémoire, je présente le développement d’un nouveau formalisme de modélisation du lentillage gravitationnel par halos en ligne de visée accéléré par des réseaux de neurones, motivé par les lacunes du lentillage à plans multiples et l’importance scientifique de la modélisation de ces effets. Les architectures de ces réseaux, conçues dans le cadre de ce travail, sont basées sur le mécanisme d’attention, et peuvent être conditionnées sur des ensembles de modèles de halos en ligne de visée afin de produire les angles de déflexion leur étant associés. Ce formalisme offre la flexibilité requise pour remplacer celui du lentillage à plans multiples, laissant à l’usager la liberté de spécifier un modèle de lentille principale et étant compatible avec des grilles de pixels de taille quelconque. Notre formalisme permet d’accélérer la modélisation du lentillage de ligne de visée par presque deux ordres de grandeur lorsque comparé au lentillage à plans multiples, et promet d’atteindre une exactitude lui étant comparable dans des développements futurs. Il s’agit d’une contribution significative à l’étude de la matière sombre aux petites échelles, qui permettra soit de réconcilier ΛCDM et les observations, ou mènera à l’adoption d’un modèle cosmologique alternatif. / The current "standard model" of cosmology is that of ΛCDM, describing a Universe undergoing accelerated expansion with a structure of cold dark matter formed into halos, onto which are assembled galaxies. Despite the numerous observational confirmations of its predictions, there remains some important tensions between measures of the distribution of dark structure on small scales of the Universe and what would be expected from ΛCDM. However, these light dark matter halos, predicted to be adundant throughout the cosmos, are not hosts of luminous galaxies and are therefore very difficult to observe directly. Yet, their presence can still be detected in galaxy-galaxy type strong gravitational lenses, a phenomenon occuring when the light of a background galaxy is strongly deflected by the gravitational field of a foreground galaxy, forming multiple images and extended arcs. Halos distributed along the line-of-sight of such systems, as well as those nested within the lens galaxy, can introduce gravitational perturbations in images of lensed galaxies. The detection of such infinitesimal effects in strong lensing observations is made with methods relying on Bayesian statistics, which require hundreds of thousands of simulations of the contribution of these perturbers to the deflection of light. Traditionally, modeling the lensing from line-of-sight halos has been done with the multi-plane lensing framework, which suffers from its inefficient recursive nature. Morevoer, the ΛCDM model predicts that most gravitational lens systems would host a larger amount of line-of-sight halos than subhalos nested within the lens galaxy, motivating a detailed modeling of line-of-sight effects. In a Bayesian analysis context, the multi-plane lensing approach represents a timescale of multiple days for the analysis of a single system. Considering that large sky surveys such as those of the Vera Rubin Observatory and the Euclid space telescope are projected to discover hundreds of thousands of gravitational lenses, the effort of constraining the small-scale distribution of dark matter is confronted to what might seem like an insurmountable problem of computation time. In this thesis, I present the development of a new neural-network-accelerated framework for modeling the gravitational lensing by line-of-sight halos, motivated by the shortcomings of multiplane lensing and the scientific importance of modeling these effects. The architectures of these networks, conceived as part of this work, are based on the attention mechanism, and can be conditioned on sets of line-of-sight halo models in order to produce their associated deflection angles. This framework offers the flexibility required to replace that of multi-plane lensing, leaving up to the user the freedom to specify a main lens model and being compatible with pixel grids of any size. Our framework allows to accelerate the modeling of line-of-sight lensing by nearly two orders of magnitude relative to multi-plane lensing, and promises to reach a comparable accuracy in future developments. This constitutes a significative contribution to the study of dark matter on small scales, which will either lead to the reconciliation of ΛCDM and observations, or the adoption of an alternate cosmological model.
239

Analýza přesnosti výsledků astronomického určení polohy / Accuracy Analysis of Astronomical Positioning Results

Jalovecký, Martin January 2012 (has links)
This diploma thesis is focused on the analysis of results accuracy of astronomical positioning. It describes observation methods and the latest surveying systems used in geodetic astronomy. Further in the thesis there is the description of surveying system MAAS-1. Subject of the elaboration is the data obtained by measuring with this system. Testing is focused on digital camera. There is also an analysis of the results of geographical coordinates, depending on the accuracy of determining the angled pixel size and also on the accuracy of the input coordinates.
240

Užití astronomické nivelace pro vytváření modelů kvazigeoidu / Use of Astronomical Levelling for Creation of Quasigeoid Models

Jurčík, Josef January 2012 (has links)
My master´s thesis deals with use of astronomical levelling for creation of quasigeoid models. The basic input dates are componets of astronomical-geodetic deflections of the vertical in points, which are determined on AGNES and VEVEŘÍ nets. The dates are adjust for determination of relative quasigeoid. In literature [4], there is simplified solution for adjustment of this dates. The thesis looks for the most comprehensive solutions of adjustment without simplification. The solutions are compared.

Page generated in 0.0575 seconds